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LATENT BELIEF SPACE PLANNING USING 
A TRAJECTORY TREE 

RELATED APPLICATIONS 

[ 0001 ] This application claims the benefit of U.S. Provi 
sional Patent Application Ser . No. 62 / 887,996 , titled 
“ PODDP : Partially Observable Differential Dynamic Pro 
gramming For Latent Belief Space Planning , ” filed Aug. 16 , 
2019 , which is hereby incorporated by reference . 

BACKGROUND 

[ 0002 ] An autonomous agent is a set of hardware and / or 
software configured to control a physical mechanism . For 
example , a vehicle ( e.g. , automobile , aircraft , or water 
vehicle ) may include an autonomous agent that controls 
steering , braking , acceleration , and / or some other physical 
mechanism of the vehicle , allowing the vehicle to be wholly 
or partially self - driving . Many different kinds of autono 
mous agents exist . An autonomous agent receives informa 
tion about the physical environment from one or more 
sensors and uses the information to help determine how to 
control the physical mechanism . For example , if data from 
a sensor indicates an obstruction in the path of a self - driving 
vehicle , an autonomous agent may instruct the vehicle to 
brake and / or turn . 
[ 0003 ] In many cases , autonomous agents are required to 
operate in situations where the state of the environment is 
uncertain . The ability to handle such situations is generally 
considered a critical goal of autonomous agents , particularly 
in situations involving potentially high stakes ( e.g. , loss of 
life and / or valuable cargo ) . For example , noisy actuators , 
imperfect sensors , and perceptual limitations such as occlu 
sion can contribute to the uncertainty that autonomous 
agents face . Even if perfect sensors and perception were 
possible , some latent states of the environment would 
remain opaque , such as whether a cookie jar is empty or 
whether another driver intends to yield . To plan under such 
uncertainty , autonomous agents typically seek to balance the 
cost of exploratory actions with the potential benefit of 
gaining additional information about the environment . How 
ever , the problem of planning under partial observability , 
which can be formalized as a partially observable Markov 
decision process ( POMDP ) is generally intractable . 
[ 0004 ] Approaches described in this section have not 
necessarily been conceived and / or pursued prior to the filing 
of this application . Accordingly , unless otherwise indicated , 
approaches described in this section should not be construed 
as prior art . 

generating a trajectory tree that represents possible trajec 
tories in a belief space , wherein nodes of the trajectory tree 
represent values of a continuous observation , a continuous 
state , and a continuous control , each node being associated 
with one of multiple timesteps along the possible trajecto 
ries , and wherein branches from inner nodes to child nodes 
correspond to possible outcomes and observations of a 
multi - modal latent state ; determining a current value of the 
continuous control associated with a current node ; and 
applying the current value of the continuous control to 
operation of the physical mechanism . 
[ 0007 ] Generating the trajectory tree may include : ( a ) in a 
first forward pass , initializing the values of the continuous 
control for the nodes ; ( b ) in a backward pass , starting at leaf 
nodes , propagating results of a derivative function through 
parent nodes ; and ( c ) in a second forward pass , applying an 
optimization function to values of the continuous control , 
based at least on the results of the derivative function . 
Operations ( b ) and ( c ) may be repeated iteratively until an 
optimization termination criterion is satisfied . 
[ 0008 ] The first forward pass may include generating the 
nodes at least by : ( i ) generating a root node of the trajectory 
tree , based at least on the current observation ; ( ii ) determin 
ing maximum likelihood outcomes for modes of the multi 
modal latent state associated with the current observation ; 
( iii ) determining maximum likelihood observations associ 
ated with the maximum likelihood outcomes ; ( iv ) generating 
child nodes of the root node , corresponding to the maximum 
likelihood outcomes and maximum likelihood observations ; 
and ( v ) performing ( ii ) , ( iii ) , and ( iv ) recursively , starting at 
the child nodes of the root node , until a finite horizon is 
reached . 
[ 0009 ] The first forward pass may include generating the 
nodes at least by : ( i ) generating a root node of the trajectory 
tree , based at least on the current observation ; ( ii ) sampling 
possible outcomes from a belief distribution associated with 
the current observation ; ( iii ) sampling possible observations 
associated with the possible outcomes ; ( iv ) generating child 
nodes of the root node , corresponding to the possible out 
comes and possible observations ; and ( v ) performing ( ii ) , 
( iii ) , and ( iv ) recursively , starting at the child nodes of the 
root node , until a finite horizon is reached . 
[ 0010 ] Generating the trajectory tree may include updat 
ing values in a preexisting data structure that represents the 
trajectory tree . 
[ 0011 ] Timesteps associated with the nodes may be sepa 
rated by time intervals that are greater than a sampling rate 
used by one or more autonomous agent sensors providing 
values of the continuous observation . 
[ 0012 ] The continuous state may be a partially - observable 
continuous state . 
[ 0013 ] The multi - modal latent state may be bimodal or 
have more than two modes , 
[ 0014 ] The physical mechanism may be a steering mecha 
nism of a vehicle . 
[ 0015 ] In general , in one aspect , one or more non - transi 
tory computer - readable media store instructions that , when 
executed by one or more processors , cause the one or more 
processors to perform operations . The operations include : 
during execution of an autonomous agent configured to 
control operation of a physical mechanism , generating a 
trajectory tree that represents possible trajectories in a belief 
space , wherein nodes of the trajectory tree represent values 
of a continuous observation , a continuous state , and a 

TECHNICAL FIELD 

[ 0005 ] The present disclosure relates generally to autono 
mous agents used to control the operation of physical 
mechanisms . 

SUMMARY 

[ 0006 ] In general , in one aspect , one or more non - transi 
tory computer - readable media store instructions that , when 
executed by one or more processors , cause the one or more 
processors to perform operations . The operations include : 
during execution of an autonomous agent configured to 
control operation of a physical mechanism , obtaining a 
current observation of a physical environment ; based at least 
on the current observation of the physical environment , 
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understanding of the various aspects and embodiments , and 
are incorporated in and constitute a part of this specification , 
but are not intended to define the limits of the disclosure . In 
the Figures , each identical or nearly identical component 
that is illustrated in various Figures is represented by a like 
numeral . For the purposes of clarity , some components may 
not be labeled in every figure . In the Figures : 
[ 0026 ] FIG . 1 is a block diagram of an example of a 
system according to an embodiment ; 
[ 0027 ] FIGS . 2A - 2B are a flow diagram of an example of 
operations for latent belief space planning using a trajectory 
tree according to an embodiment ; 
[ 0028 ] FIG . 3 is a flow diagram of another example of 
operations for latent belief space planning using a trajectory 
tree according to an embodiment ; 
[ 0029 ] FIG . 4 illustrates an example of a trajectory tree 
according to an embodiment ; 
[ 0030 ] FIG . 5A illustrates an example of an algorithm for 
a forward pass according to an embodiment ; 
[ 0031 ] FIG . 5B illustrates an example of an algorithm for 
a backward pass according to an embodiment ; 
[ 0032 ] FIGS . 6A - 6C illustrate examples of latent belief 
space planning scenarios according to an embodiment ; and 
[ 0033 ] FIG . 7 is a block diagram of an example of a 
computer system according to an embodiment . 

DETAILED DESCRIPTION 

I. Introduction 

continuous control , each node being associated with one of 
multiple timesteps along the possible trajectories , and 
wherein branches from inner nodes to child nodes corre 
spond to possible outcomes and observations of a multi 
modal latent state ; determining that a current observation 
corresponds most closely to a closest - fit node ; obtaining a 
current value of the continuous control associated with the 
closest - fit node ; and applying the current value of the 
continuous control to operation of the physical mechanism . 
[ 0016 ] Generating the trajectory tree may include : ( a ) in a 
first forward pass , initializing the values of the continuous 
control for the nodes ; ( b ) in a backward pass , starting at leaf 
nodes , propagating results of a derivative function through 
parent nodes ; and ( c ) in a second forward pass , applying an 
optimization function to values of the continuous control , 
based at least on the results of the derivative function . 
Operations ( b ) and ( c ) may be repeated iteratively until an 
optimization termination criterion is satisfied . 
[ 0017 ] The first forward pass may include generating the 
nodes at least by : ( i ) generating a root node of the trajectory 
tree , based at least on an initial observation ; ( ii ) determining 
maximum likelihood outcomes for modes of the multi 
modal latent state associated with the initial observation ; 
( iii ) determining maximum likelihood observations associ 
ated with the maximum likelihood outcomes ; ( iv ) generating 
child nodes of the root node , corresponding to the maximum 
likelihood outcomes and maximum likelihood observations ; 
and ( v ) performing ( ii ) , ( iii ) , and ( iv ) recursively , starting at 
the child nodes of the root node , until a finite horizon is 
reached . 
[ 0018 ] The first forward pass may include generating the 
nodes at least by : ( i ) generating a root node of the trajectory 
tree , based at least on an initial observation ; ( ii ) sampling 
possible outcomes from a belief distribution associated with 
the initial observation ; ( iii ) sampling possible observations 
associated with the possible outcomes ; ( iv ) generating child 
nodes of the root node , corresponding to the possible out 
comes and the possible observations ; and ( v ) performing 
( ii ) , ( iii ) , and ( iv ) recursively , starting at the child nodes of 
the root node , until a finite horizon is reached . 
[ 0019 ] The operations may further include : adjusting the 
current value of the continuous control based at least on a 
difference between the current observation and a possible 
value of the continuous observation associated with the 
particular node . 
[ 0020 ] Timesteps associated with the nodes may be sepa 
rated by time intervals that are greater than a sampling rate 
used by one or more autonomous agent sensors providing 
values of the continuous observation . 
[ 0021 ] The continuous state may be a partially - observable 
continuous state . 
[ 0022 ] The multi - modal latent state may be bimodal or 
have more than two modes . 
[ 0023 ] The physical mechanism may be a steering mecha 
nism of a vehicle . 
[ 0024 ] One or more embodiments described in this Speci 
fication and / or recited in the claims may not be included in 
this General Overview section . 

[ 0034 ] As noted above , the problem of planning under 
partial observability is generally intractable . Some trajectory 
optimization systems have been used in nonlinear model 
predictive control architectures . However , those approaches 
typically require the state to be fully observable or sepa 
rately estimated . Extensions of trajectory optimization tech 
niques to belief space planning allow partial observability to 
be captured within continuous motion planning algorithms 
suitable for robotics applications . However , those 
approaches primarily consider unimodal Gaussian uncer 
tainty ( i.e. , where a belief can be modeled as a Gaussian 
distribution having a single mode ) . Approaches that rely on 
Gaussian distributions have limited applicability to prob 
lems with multi - modal structure . 
[ 0035 ] In practice , much of the uncertainty in the real ( i.e. , 
non - simulated ) world is multi - modal in structure , such as : 
the presence or location of an object ( e.g. , a goal object or 
obstruction ) ; the discrete mode of a system ; the expected 
behavior of another person or agent ( e.g. , whether another 
vehicle will act aggressively or courteously ) ; and many 
other kinds of problems faced by autonomous agents in the 
real world . Multi - modal structures can be represented within 
general POMDPs . However , optimizing continuous actions 
( e.g. , for motion planning ) is challenging even for state - of 
the - art POMDP solvers . 
[ 0036 ] One or more embodiments described herein 
include a trajectory optimization approach for solving non 
linear POMDPs involving continuous states , actions , and 
observations , with non - Gaussian beliefs over discrete latent 
variables . In some examples , this approach may be referred 
to as partially observable differential dynamic programming 
( PODDP ) . PODDP builds and optimizes a contingency plan 
over a tree of possible observations and trajectories in the 
belief space . Dynamic programming over the trajectory tree 
may include propagating an approximate value function 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0025 ] Various aspects of at least one embodiment are 
discussed below with reference to the accompanying Fig 
ures , which are not intended to be drawn to scale . The 
Figures are included to provide illustration and a further 
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through the belief state dynamics defined by observations 
and Bayesian belief updating . In addition , some examples 
include a hierarchical dynamic programming decomposition 
of the problem . This approach may be practical in various 
settings , including but not limited to robotics settings where 
receding horizon planning is applicable and where the 
control frequency may be higher than the observation fre 
quency . 
[ 0037 ] In general , approaches described herein allow for 
modeling and optimizing trajectories in many different sce 
narios , including several important classes of nonlinear , 
continuous planning problems with uncertainty over discrete 
latent states . ( In this discussion , for ease of explanation in 
different contexts , a latent state may also be referred to as a 
hidden state , partially observable state , or discrete state . ) 
Those classes of problems include : ( 1 ) tasks where the cost 
function depends on an uncertain latent state , e.g. , where an 
agent must approach or avoid goals or obstacles that may be 
in a finite number of locations ; ( 2 ) tasks where the dynamics 
are conditioned on the uncertain latent mode of the ( hybrid ) 
system , e.g. , contact mode , component status , or environ 
mental condition ( e.g. , smooth versus rough terrain ) ; and ( 3 ) 
interactive tasks where other entities ' trajectories impose 
dynamic costs and are influenced by their latent intentions . 
In this third class of problems , for example , autonomous 
driving systems must plan under uncertainty about other 
vehicles interactive trajectories , conditioned on the other 
drivers ' situational awareness level , intention to cooperate , 
etc. 

II . System Architecture 
[ 0038 ] FIG . 1 is a block diagram of an example of a 
system 100 according to an embodiment . In an embodiment , 
the system 100 may include more or fewer components than 
the components illustrated in FIG . 1. The components 
illustrated in FIG . 1 may be local to or remote from each 
other . The components illustrated in FIG . 1 may be imple 
mented in software and / or hardware . Each component may 
be distributed over multiple applications and / or machines . 
Multiple components may be combined into one application 
and / or machine . Operations described with respect to one 
component may instead be performed by another compo 
nent . 

[ 0039 ] As illustrated in FIG . 1 , the system 100 includes an 
autonomous vehicle 102. The autonomous vehicle 102 may 
be a wholly autonomous vehicle configured to operate 
without any human guidance . Alternatively , the autonomous 
vehicle 102 may be a partially autonomous vehicle in which 
some aspects are automated and others remain under control 
of a human operator . Some examples of autonomous 
vehicles include , but are not limited to : a self - driving 
automobile designed to transport cargo and / or passengers 
( e.g. , a self - driving tractor - trailer used to transport cargo 
over roads and / or within a cargo distribution facility ) ; an 
aircraft ( e.g. , a cargo or passenger aircraft , a drone , or 
another kind of aircraft ) ; a watercraft ; a spacecraft ; and an 
automated home appliance ( e.g. , a robotic vacuum cleaner ) . 
As used herein , the term “ vehicle ” should not be considered 
limited to craft used to transport cargo and / or passengers . 
The autonomous vehicle 102 includes one or more physical 
mechanism ( s ) 120 used to direct the autonomous vehicle 
102's trajectory ( including direction , acceleration , and / or 
speed ) , such as a steering mechanism , accelerator , brake , 
etc. A physical mechanism 120 may include a controller ( not 

shown ) that translates digital and / or analog instructions to 
physical motion ( e.g. , physically turning the wheels , increas 
ing or decreasing acceleration , engaging a brake mechanism , 
etc. ) . 
[ 0040 ] To help direct the autonomous vehicle 102's tra 
jectory , the autonomous vehicle 102 includes one or more 
autonomous agent ( s ) 104 configured to control the operation 
of one or more of the physical mechanism ( s ) 120. For ease 
of discussion , the following description assumes a single 
autonomous agent 104 ; however , embodiments may be 
practiced with any number of autonomous agents 104. The 
autonomous agent 104 is configured to receive information 
about the physical environment from one or more sensors 
106. For example , the sensor ( s ) 106 may include a radar 
sensor , lidar sensor , camera ( i.e. , configured to capture still 
images and / or video ) , microphone , thermometer , altitude 
sensor , global positioning system ( GPS ) , and / or another 
kind of sensor configured to gather information about the 
physical environment . Information gathered by a sensor 106 
may relate to the geospatial location of the autonomous 
vehicle 102 , weather conditions , locations of static and / or 
mobile obstacles ( e.g. , other vehicles , pedestrians , terrain , 
overpasses , etc. ) , road markings , altitude , and / or other infor 
mation relevant to the autonomous vehicle 102's location 
and trajectory in the physical environment . 
[ 0041 ] The autonomous agent 104 includes a trajectory 
planner 108. Based at least in part on information from the 
sensor ( s ) 106 , the trajectory planner 108 is configured to 
generate a trajectory tree 110 and use the trajectory tree 110 
to plan a trajectory for the autonomous vehicle 102 . 
Examples of operations for generating and using a trajectory 
tree 110 are described in further detail below . Based at least 
on the trajectory tree 110 , the autonomous agent 104 is 
configured to control operation of the physical mechanism 
( s ) 120. For example , the autonomous agent 104 may send 
a signal to a steering mechanism to adjust the autonomous 
vehicle 102's direction , to an accelerator to increase or 
decrease acceleration , and / or to a braking mechanism to 
apply the brakes . The autonomous agent 104 may be con 
figured to control operation of many different kinds of 
physical mechanisms 120 in many different ways . 
[ 0042 ] The trajectory tree 110 may be conceptualized as 
starting from a root node and branching “ upward . ” The 
upward direction is also referred to herein as “ forward . ” 
Connections between nodes of the trajectory tree 110 are 
referred to as “ edges . ” A node that connects to one or more 
higher nodes is an “ inner ” node and may be referred to as a 
“ parent ” or “ grandparent ” ( depending on the number of 
levels of separation ) of the higher node ( s ) . The root node is 
thus the innermost node . The higher node ( s ) is / are , in turn , 
the parent node's “ child ” node ( s ) . A node that does not have 
any children is referred to as a “ leaf " node . An “ upward ” or 
“ forward ” traversal ( also referred to as a “ pass ” ) of the 
trajectory tree 104 begins at an inner node ( e.g. , the root 
node ) and advances along edges toward the leaf node ( s ) . A 
" downward ” or “ backward ” traversal of the trajectory tree 
104 begins at one or more leaf nodes and advances toward 
the root node . A traversal may be performed in many 
different ways , including but not limited to depth - first ( i.e. , 
traversing the full depth of one branch before proceeding to 
the next branch ) or breadth - first ( i.e. , traversing all the nodes 
at a given level before proceeding to the next level ) . The 
trajectory tree 104 may be stored using many different kinds 
of data structures , including but not limited to object 
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network policy server , a proxy server , a generic machine , a 
function - specific hardware device , a hardware router , a 
hardware switch , a hardware firewall , a hardware network 
address translator ( NAT ) , a hardware load balancer , a main 
frame , a television , a content receiver , a set - top box , a 
printer , a mobile handset , a smartphone , a personal digital 
assistant ( “ PDA ” ) , a wireless receiver and / or transmitter , a 
base station , a communication management device , a router , 
a switch , a controller , an access point , and / or a client device . 

III . Operations for Latent Belief Space Planning 
Using a Trajectory Tree 

oriented structures ( e.g. , with each node represented as an 
instance of a node object and referencing zero or more other 
node objects as child nodes ) or an array . While examples 
described herein assume a strict tree data structure , some 
embodiments may include multiple root nodes and / or con 
nections between nodes that form cycles , thus resulting in a 
data structure that cannot strictly be referred to as a tree . 
Embodiments should not be considered limited to the spe 
cific structure described in the included examples . 
[ 0043 ] In an embodiment , each level of the trajectory tree 
104 corresponds to a set of one or more states in belief space 
at a particular timestep . For example , if the system 100 uses 
a control frequency of 50 Hz , each level of the trajectory tree 
104 may correspond to increments of 1 / soth of a second . In 
this example , the projected observation ( s ) and control ( s ) for 
a particular node correspond to a time 1 / soth of a second 
earlier than the time associated with its immediate child 
( ren ) . In some examples , the system 100 may use a control 
frequency of 1 Hz , 10 Hz , and / or another frequency . The 
system 100 may use different control frequencies for differ 
ent physical mechanisms and / or may change a control 
frequency over time . The magnitudes of timesteps may be 
consistent across all levels of the trajectory tree 104 or may 
change as the distance from the root node increases . The 
timesteps of the trajectory tree 104 may align with an 
observation frequency ( e.g. , the frequency of data collection 
by one or more sensors ) , or may correspond to a different 
frequency . In some examples , the trajectory tree 104 repre 
sents timesteps that are longer than the time between obser 
vations , e.g. , as a multiple of the time between observations 
or an unrelated magnitude . 
[ 0044 ] The autonomous agent 104 may be configured to 
store data associated with trajectory planning ( e.g. , obser 
vation data 114 , state data 116 , and / or control data 118 ) in a 
data repository 112. A data repository 112 is any type of 
storage unit and / or device ( e.g. , a file system , database , 
collection of tables , or any other storage mechanism ) for 
storing data . A data repository 112 may include multiple 
different storage units and / or devices . The multiple different 

units and / or devices may or may not be of the same 
type or located at the same physical site . Further , a data 
repository 112 may be implemented or may execute on the 
same computing system as one or more other components of 
the system 100. Alternatively or additionally , a data reposi 
tory 112 may be implemented or executed on a computing 
system separate from one or more other components of the 
system 100. A data repository 112 may be logically inte 
grated with one or more other components of the system 
100. Alternatively or additionally , a data repository 112 may 
be communicatively coupled to one or more other compo 
nents of the system 100 via a direct connection or via a 
network . In FIG . 1 , a data repository 112 is illustrated as 
storing various kinds of information . Some or all of this 
information may be implemented and / or distributed across 
any of the components of the system 100. However , this 
information is illustrated within the data repository 112 for 
purposes of clarity and explanation . 
[ 0045 ] One or more components of the system 100 may be 
implemented on one or more digital devices . The term 
" digital device ” generally refers to any hardware device that 
includes a processor . A digital device may refer to a physical 
device executing an application or a virtual machine . 
Examples of digital devices include a computer , a tablet , a 
laptop , a desktop , a netbook , a server , a web server , a 

[ 0046 ] Gaussian belief space planning assumes that all 
uncertainty can be represented in the form of unimodal 
Gaussian distributions over the state space . For example , a 
robot's position along an axis , in the presence of observa 
tional noise , may be modeled using a unimodal Gaussian 
distribution ( a.k.a. “ normal distribution ” ) . As another 
example , the mass of a cargo container , in the absence of an 
ability to weigh the container precisely at a given moment , 
may be modeled using a unimodal Gaussian distribution . In 
contrast , techniques described herein capture the multi 
modality of real - world uncertainty . Specifically , one or more 
embodiments represent multi - modal uncertainty using a 
trajectory tree , and apply differential dynamic programming 
( DDP ) to optimize trajectory planning over the tree . As used 
herein , the terms " optimal , ” “ optimize , " " optimization , ” etc. 
do not refer to a theoretically optimal result , but rather to a 
best - effort attempt at optimization under real - world con 
straints ( e.g. , time , available computing power and / or 
memory , etc. ) . 
[ 0047 ] In general , DDP techniques optimize a trajectory 
by alternating forward and backward passes . The forward 
pass rolls out the dynamics and costs using a control 
sequence . The backward pass takes a local second - order 
approximation to the value function and updates the control 
sequence to optimize the approximate value function . The 
forward and backward passes are repeated until a locally 
optimal trajectory is found . 
[ 0048 ] PODDP plans in belief space , but unlike Gaussian 
belief space planning , the marginal distribution over obser 
vations is not unimodal and the belief - space trajectory 
cannot be approximated by propagating a single sequence of 
means and variances . In examples described herein ( includ 
ing , but not limited to , example scenarios of a “ T - Maze " for 
planning under cost uncertainty , varying terrain roughness 
for planning under dynamic mode uncertainty , and lane 
changing for planning in a belief space that includes other 
agents ' latent intensions ) , a discrete latent variable induces 
a multi - modal distribution over observations . In addition , a 
non - Gaussian belief state induces a theoretically infinitely 
branching tree of observations , beliefs , and controls . An 
initial PODDP forward pass constructs a trajectory tree from 
root to leaves , using one or more current observations ( e.g. , 
data from one or more sensors ) as a basis for predicting 
possible outcomes over a finite time horizon . As used herein , 
" outcomes ” refer to possible state transitions and “ observa 
tions ” refer to theoretical values of data received from 
sensors ( i.e. , theoretical observations that would be consis 
tent with those state transitions ) . The trajectory tree repre 
sents a finite subset of the theoretically infinite branching 
tree of observations , beliefs , and controls , thus providing a 
finite structural approximation of a trajectory planning prob 
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lem having theoretically infinite possible outcomes . An 
example of a trajectory tree is described in further detail 
below . 
[ 0049 ] The PODDP backward pass proceeds from the 
leaves of the tree and propagates the value through obser 
vations and belief updates via dynamic programming . A 
subsequent forward pass applies an optimization function to 
values of the continuous control at each node , based on the 
information propagated in the backward pass . As described 
below , multiple forward and backward passes may be used 
to iteratively optimize the trajectory tree . After optimization , 
the trajectory tree includes an optimized value of a control 
to apply to a physical mechanism for a control cycle . The 
following discussion of FIGS . 2A - 2B and FIG . 3 provide a 
general overview of this process according to some embodi 
ments . A detailed example is provided below with reference 
to FIGS . 4 and 5A - 5B . 
[ 0050 ] FIGS . 2A - 2B are a flow diagram of an example of 
operations for latent belief space planning using a trajectory 
tree according to an embodiment . One or more operations 
illustrated in FIGS . 2A - 2B may be modified , rearranged , or 
omitted all together . Accordingly , the particular sequence of 
operations illustrated in FIGS . 2A - 2B should not be con 
strued as limiting the scope of one or more embodiments . 
[ 0051 ] Generating and optimizing a trajectory tree 
requires at least some information about the observable 
physical environment . An autonomous agent obtains a cur 
rent observation ( Operation 202 ) , for example , from one or 
more sensors as illustrated in FIG . 1. The autonomous agent 
generates a root node based on the current observation 
( Operation 204 ) and initializes a value of the continuous 
control for the root node ( Operation 206 ) . The autonomous 
agent may initialize the continuous control as a default value 
( e.g. , zero or some other default value , such as a default 
value based on prior experimentation ) . An initial forward 
pass of the trajectory tree may proceed from the root node 
to construct the trajectory tree , without yet making any 
attempt at optimizing the values of the continuous control at 
each node . 
[ 0052 ] Generating child nodes is based on an understand 
ing of the latent state as being multi - modal in structure . This 
understanding may be handled in various ways . In one 
approach , the autonomous agent determines maximum - like 
lihood outcomes and observations for modes of the multi 
modal latent state ( Operation 208 ) . These maximum - likeli 
hood outcomes and observations correspond to predicted 
peaks of the multi - modal latent state . An example of a 
maximum - likelihood outcomes ( MLO ) heuristic is 
described in further detail below , in which the maximum 
likelihood outcomes and observations are computed as the 
means of the distributions . In another approach , the autono 
mous agent samples possible outcomes from a belief distri 
bution ( Operation 210 ) , which may not correspond to pre 
dicted peaks of the multi - modal latent state . Whatever 
approach is used , the autonomous agent generates at least 
two child nodes of the root node ( Operation 212 ) , corre 
sponding to respective outcomes and observations , and 
initializes values of the continuous control for each of the 
child nodes ( Operation 213 ) . 
( 0053 ] In an embodiment , generating the tree is a recursive 
process that continues to add levels to the trajectory tree 
until a predetermined finite horizon is reached . Specifically , 
the finite horizon may correspond to a predetermined num 
ber of timesteps ( i.e. , a predetermined number of levels of 

the trajectory tree ) , such that planning is based on projec 
tions up to a certain amount of time in the future . At each 
level of the initial forward pass , the autonomous agent 
determines whether the finite horizon has been reached 
( Decision 214 ) . If the finite horizon has been reached , then 
the most recently - generated child nodes are left as leaf 
nodes . If the finite horizon has not been reached , then the 
process is repeated for each child node . 
[ 0054 ] At the end of the first forward pass , the autonomous 
agent has generated a trajectory tree out to a finite horizon , 
with initial values of the continuous control for each node . 
Having thus constructed the trajectory tree , the autonomous 
agent may proceed to optimize the trajectory tree for a value 
of the continuous control at the root node . The optimization 
process may include at least one backward pass and one 
additional forward pass . In a backward pass , the autonomous 
agent applies a derivative function to the leaf nodes ( Opera 
tion 216 ) . Then , starting at the leaf nodes , the autonomous 
agent propagates results of the derivative function through 
the parent nodes , toward the root node ( Operation 218 ) . A 
subsequent forward pass starts again at the root node and 
utilizes the values of the derivative function propagated 
from the leaf nodes . Specifically , starting at the root node 
and proceeding toward the leaf nodes , the autonomous agent 
applies an optimization function to values of the continuous 
control ( Operation 220 ) . 
[ 0055 ] The autonomous agent may iteratively perform one 
or more additional forward and / or backward passes of the 
trajectory tree , until one or more optimization termination 
conditions is / are satisfied ( Decision 222 ) . The autonomous 
agent may use many different criteria to determine when to 
stop optimizing the trajectory tree . For example , the autono 
mous agent may have a limited amount of time in which to 
generate the trajectory tree ( e.g. , an amount of time that 
allows the autonomous agent to satisfy a target control 
frequency ) . An optimization termination condition may be 
satisfied when that amount of time is reached , or is expected 
to be reached before completing another forward and / or 
backward pass . The autonomous agent may check how 
much time remains at the end of a forward or backward pass , 
and / or at intervals throughout each forward or backward 
pass ( e.g. , at each level of traversal and / or at each node ) . 
Alternatively or additionally , the autonomous agent may 
compare the value of the continuous control ( i.e. , at the root 
node and / or one or more other nodes ) from one iteration to 
the next . An optimization termination condition may be 
satisfied when the current value of the continuous control 
differs from a prior value ( for example , from the value at the 
root node in a previous pass of the trajectory tree ) by no 
more than a predetermined threshold difference ( e.g. , as a 
percentage or absolute value ) , implying that additional itera 
tions will provide such marginal improvement that they are 
not required . 
[ 0056 ] When the autonomous agent has finished optimiz 
ing the trajectory tree , the autonomous agent determines a 
current value of the continuous control ( Operation 224 ) . 
Specifically , the value of the continuous control at the root 
node represents the optimized value based on the most 
current observation and optimizations , as described above . 
This value thus represents the optimal value to apply in the 
current control cycle . Accordingly , the autonomous agent 
applies the current value of the continuous control to opera 
tion of the physical mechanism being controlled by the 
autonomous agent ( Operation 226 ) . 
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[ 0057 ] The autonomous agent may repeat the process 
described above on an ongoing basis , during operation of the 
autonomous vehicle . Specifically , the autonomous agent 
may continue to obtain new observations ( e.g. , according to 
a control frequency and / or observation frequency ) , and 
generate trajectory trees , to determine the optimal control to 
apply on an ongoing basis . Upon obtaining a new observa 
tion , the autonomous agent may generate a new trajectory 
tree from scratch ( i.e. , initialize a new trajectory tree data 
structure with default control values and then optimize the 
new trajectory tree ) or reuse an existing trajectory tree data 
structure . When reusing an existing data structure , the 
autonomous agent may re - initialize controls to default val 
ues at each node . Alternatively , the autonomous agent may 
use values already present in the trajectory tree as initial 
control values . The autonomous agent may copy the existing 
values to a new data structure or reuse the same data 
structure . In addition , given that the new trajectory tree starts 
at least one timestep forward in time , the autonomous agent 
may discard the unused branch ( es ) ( i.e. , any projected 
trajectories that are no longer relevant ) and extend the depth 
of the remaining subtree by adding one or more layers of 
child nodes , to account for the passage of time and keep the 
finite horizon constant . Reusing existing values and / or the 
data structure may help reduce the amount of processing 
needed to optimize the trajectory tree for the next control 
cycle . 

[ 0058 ] In the example of FIGS . 2A - 2B , for each control 
cycle , the autonomous agent uses the trajectory tree to 
optimize for a value of the continuous control based on a 
current observation . In another approach , the autonomous 
agent still initializes and optimizes the trajectory tree ( i.e. , 
over a series of forward and backward passes , until an 
optimization termination criterion is satisfied ) . However , in 
this approach , the autonomous agent does not re - optimize 
the trajectory tree for each control cycle . Instead , for a given 
control cycle , the autonomous agent determines which node 
of the previously - generated trajectory tree most closely 
approximates real - world conditions , i.e. , the node whose 
observation value most closely matches a current , real - world 
observation . Between control cycles , the autonomous agent 
may adjust the value of the control to be applied , based on 
differences between real - world observations and the 
approximations found in the tree . For example , as described 
in further detail below , the autonomous agent may apply a 
linear feedback gain ( i.e. , increase or decrease the value ( s ) 
of one or more dimensions of the nominal control ) based on 
a difference between real - world and projected observations . 
FIG . 3 is a flow diagram of another example of operations 
for latent belief space planning using a trajectory tree 
according to an embodiment , following this alternative 
approach . One or more operations illustrated in FIG . 3 may 
be modified , rearranged , or omitted all together . Accord 
ingly , the particular sequence of operations illustrated in 
FIG . 3 should not be construed as limiting the scope of one 
or more embodiments . 
[ 0059 ] In this approach , an autonomous agent generates a 
trajectory tree based on information about the observable 
physical environment ( Operation 302 ) , for example using 
techniques described above with respect to FIGS . 2A - 2B . At 
a later time ( e.g. , after an amount of time corresponding to 
one or more timesteps in the trajectory tree ) , the autonomous 
agent obtains a current observation ( Operation 304 ) that 
includes information about the observable physical environ 

ment at that time . As noted above , the nodes of the trajectory 
tree represent a branching set of possible controls and 
observations . To determine which control to apply in the 
current control cycle , the autonomous agent may determine 
a closest - fit node in the trajectory tree , for the current 
observation ( Operation 306 ) . That is , the autonomous agent 
may determine which node includes a value of the continu 
ous observation that most closely matches ( e.g. , as a per 
centage or absolute difference ) the current observation . The 
autonomous agent may inspect the entire trajectory tree or 
may inspect only the nodes at a given level , i.e. , the level 
associated with the current timestep . Upon determining 
which node is the closest - fit node , the autonomous agent 
obtains the current value of the continuous control from the 
closest - fit node ( Operation 308 ) and applies the current 
value of the continuous control to operation of the physical 
mechanism being controlled by the autonomous agent ( Op 
eration 310 ) . 
[ 0060 ] Because the possible value of the continuous obser 
vation at the closest - fit node likely does not match the 
current observation exactly , the autonomous agent may 
adjust the value of the control to be applied , based on a 
difference between one or more current , real - world obser 
vations and the projected value ( s ) found in the tree ( Opera 
tion 312 ) . Formula ( 9 ) below includes a linear closed - loop 
feedback gain “ K. " The adjusted value of a control may 
be a function of ( 1 ) the nominal control unom ) ( 2 ) Kbranch for 
the branch of the trajectory tree starting from the closest - fit 
node , ( 3 ) the nominal belief state , and ( 4 ) the actual belief 
state . For example : 

U adj = Unom + Kyranchx [ / xnombnom ) - ( x actuabb actuar ) ) ( 1 ) 

Alternatively or additionally , another formula may be used 
to compute and apply a feedback gain and / or other kind of 
adjustment . In addition , the autonomous agent may add 
child nodes to the branch of the trajectory tree that emanates 
from the closest - fit node . Alternatively , the autonomous 
agent may regenerate the trajectory tree periodically , based 
on current observations , using techniques described above 
with respect to FIGS . 2A - 2B . For example , the autonomous 
agent may regenerate the trajectory tree when the finite 
horizon is reached , indicating that the trajectory tree no 
longer supplies a plan to execute for the next control cycle . 
Alternatively , the autonomous agent may regenerate the 
trajectory tree every N control cycles , where N is a prede 
termined number of control cycles and may be configurable , 
thus using a hybrid approach that reduces the number of 
times the trajectory tree must be regenerated . 
[ 0061 ] The autonomous agent may repeat the process 
described above on an ongoing basis , during operation of the 
autonomous vehicle . Specifically , the autonomous agent 
may continue to obtain new observations ( e.g. , according to 
a control frequency and / or observation frequency ) , and 
match the new observations to closest - fit nodes in the 
trajectory tree ( optionally regenerating the trajectory tree 
periodically , as described above ) , to determine the optimal 
control to apply on an ongoing basis . 

IV . Detailed Examples 

[ 0062 ] Detailed examples are described below for pur 
poses of clarity . Components and / or operations described 
below should be understood as examples that may not be 
applicable to one or more embodiments . Accordingly , com 
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V * ( x , b ) -E - 6 , [ 1 ( x ( x , b ) z ) + Ex [ V " ( X : + , h ( 0X , 
Uz - 1,4-1,6- ) ) ] ] ( 3 ) 

" ( x , bz ) = E - b7 [ X72 ) ] 
where in the second expectation 0 , p ( 0,1x ,, z ) and X : +1 ~ P ( X + 
1 | X , U , Z ) and where the value at the planning horizon T is the 
expected final cost . In this example , the optimal policy may 
thus be defined as : 

1 * ( x , b ) = arg max , 1 * ( x , b ) . ( 4 ) 

ponents and / or operations described below should not be 
construed as limiting the scope of one or more embodiments . 
[ 0063 ] A. Trajectory Tree Optimization 
[ 0064 ] 1. Problem Formulation 
[ 0065 ] The following examples consider finite - horizon 
trajectory planning and control problems , in environments 
with hybrid continuous and discrete state , and continuous 
actions and observations . The state space ( referring gener 
ally to a combination of hidden and continuous states ) may 
be represented as S = XxZ and factorized into a continuous 
state space X and a discrete space state Z. The discrete state 
represents the latent mode of the hybrid system . The control 
space U and observation space o are continuous . For 
simplicity , the continuous state may be assumed to be fully 
observable , while the discrete state is partially observable ; 
this formulation is thus a mixed - observability Markov deci 
sion process ( MDP ) model that yields more compact repre 
sentations of the belief space and dynamics . However , the 
model may be extended to allow partially observable con 
tinuous state , for example by assuming the continuous state 
to be Gaussian distributed and planning in the Gaussian 
belief state . In addition , for simplicity , the value of the 
hidden state may be assumed to be constant over the 
planning horizon . This assumption is sensible when dealing 
with problems with relatively short planning horizons ( e.g. , 
model - predictive control ) over which the hidden state can be 
assumed to be constant . However , other embodiments may 
extend stochastic dynamics over the hidden state , for 
example by incorporating Bayesian filtering to update the 
belief over the hidden state . In these examples , system 
dynamics are defined by the conditional distribution over the 
next state X4 + 1.P ( Xz + 1 \ x , u ,, Z ) , which depends on the current 
state ( x ,, z ) ES , and control u , EU . The observation distribu 
tion po , lx , Z ) is also conditioned on the current state . The 
current belief about the hidden state depends on the history 
of observed states , controls , and observations . Recursive 
Bayesian filtering may be used to update the current belief , 
based on the latest observation , which includes both 0 , and 
X , following the mixed - observability assumption : 

An example of a PODDP approach to computing V and T * 
is described below . 
[ 0067 ] 2. PODDP Forward Pass 
[ 0068 ] Partially observable differential dynamic program 
ming ( PODDP ) is discussed generally above . In this 
example , given an initial belief state ( x , bo ) , the initial 
PODDP forward pass constructs a trajectory tree that 
approximates the infinite space of possible control , state , 
observation , and belief sequences up to a finite horizon T. 
Each node in the tree may be labeled with the control to be 
executed if that node is ( theoretically ) reached . Given the 
control and belief state at a given node , a finite set of 
branches from that node may be generated , corresponding to 
possible state transitions , observations , and belief updates . A 
control node is created following each branch , and tree 
expansion proceeds recursively until the finite horizon is 
reached 
[ 0069 ] FIG . 4 illustrates an example of a trajectory tree 
400 according to an embodiment , and FIG . 5A illustrates an 
example of an algorithm 502 for a forward pass according to 
an embodiment . As illustrated in FIG . 4 , starting from belief 
state ( xo , bo ) , tree construction rolls out control u , for each 
possible latent state value z E Z , assuming next state x? ? and 
observation o , take their maximum likelihood value , and 
b ? is given by Bayesian belief updating . Tree construction 
proceeds recursively from each x? ?, b , ? , until the finite 
horizon is reached . In the example illustrated in FIG . 4 , 
superscript labels for 07-1 , X7-1 , bt - 1 have been suppressed 
for clarity . A complete notation would record the complete 
history of latent state values used to generate the state and 
observation sequence preceding the node . 
[ 0070 ] To approximate the infinite set of continuous obser 
vations that are possible from each node , a maximum 
likelihood outcomes ( MLO ) heuristic may be used . For each 
possible latent state value z E Z , the maximum - likelihood 
state transition and observation are computed , and a belief 
update is performed as illustrated in lines 12-14 of the 
algorithm 502. The MLO heuristic transforms the operation 
of sampling next states and observations into a deterministic 
function , which PODDP requires to be differentiable . 
Accordingly , p ( x_lx , -1,4 , -1,2 ) and p ( 0 , lx ,, z ) may be assumed 
to be Gaussian distributions with additive noise . In this 
approach , MLO corresponds to taking the mean of the 
distributions , and differentiation includes taking the deriva 
tive of the underlying process . 
[ 0071 ] In this example , the forward pass is called on every 
iteration of PODDP . On the first iteration , the nominal 
controls Unom are initialized to a default value ( constant in 
the examples herein , although more complex schemes are 
possible ) , and nominal belief states Snom and the control 
updates k and K are set to null . At later iterations , k and K , 
computed by the backward pass , specify modifications to the 
previous control Unom and provide linear feedback control 

bi + 1 ( z ) = P ( z | 07 , X? , Ut - 1 , ... , 01 , X1 , uo , Xo , bo ) ( 2 ) 

= P ( z | 07 , X7 , Ut - 1 , X : -1 , b ) 

= n . p ( 0+ Xt , z ) p ( x + | X : -1 , U4-1 , 7 ) b : ( z ) 
= h ( 07 , X7 , Ut - 1 , X : -1 , b ) , 

where n is a normalizing constant , and where h ( ) is defined 
to denote the deterministic belief update function mapping by 
to bet1 
[ 0066 ] The running loss function 1 ( x , u , z ) represents the 
loss incurred by the control u , from the current state , and the 
final loss function 1 , { X79Z ) represents the loss incurred within 
a state at the end of the planning horizon ; both functions may 
be assumed to be twice - differentiable . To reduce costs , 
controls may be conditioned on the current belief state , 
defined as the pair ( x ,, b ) because the current POMDP state 
( x , z ) is not fully observable . The expected finite - horizon 
cost of a policy n may be defined mapping belief states to 
controls recursively : 
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Q ( ds , du ) = ( 6 ) 

biz ; B + 83 ) [ ( x + 8x , u + du , z ) + V ( x + 8x , h ( o ' , x ' , u + du , 
ZEZ 

x + 8x , blß + 8B ) ] = { ballz + V ( 5 :) ) 
ZEZ 

gains to stabilize the trajectory around Smom , respectively . 
The step size a is set by a line search procedure . 
[ 0072 ] 3. PODDP Backward Pass 
[ 0073 ] Continuing the example , DDP computes a second 
order approximation to the value function within a local 
region around a trajectory , i.e. , within a theoretical geomet 
ric region that encompasses small perturbations around the 
trajectory and for which the second - order approximation 
remains valid . Starting from the end of the trajectory ( i.e. , a 
leaf node ) , DDP takes second - order approximations to the 
cost function and the dynamics , and uses dynamic program 
ming to propagate the value function backward through 
time . In this discussion , the “ value function ” computes the 
expected sum of costs up to the finite horizon , corresponding 
to the “ value ” of the trajectory . The “ cost function ” is a 
function of the state and the control that returns a scalar , 
indicating how undesirable or costly that control is in that 
state . For example , a cost function may represent how much 
effort or energy a given control requires . “ Dynamics ” refers 
to how the system changes over time as a function of its 
current state and its controls , e.g. , x ' = f ( x , u ) . The general 
concept of dynamic programming is discussed in Dimitri P. 
Bertsekas , Dynamic Programming and Optimal Control 
( 2017 ) . During this process , locally optimal control modi 
fications and linear feedback control gains are computed , 
which are used to update the trajectory during the next 

where ds is implicitly decomposed into dx and oß , and 
where o ' and x ' are assumed to take on their maximum 
likelihood values . The second expression introduces vari 
able abbreviations that are used in the continuing discussion 
below . In addition , let V ' = ( s'z ) . 
[ 0078 ] A second - order approximation ? may be taken to 
the state - action value function by computing first- and 
second - derivatives with respect to ds and du . In this 
example , an iterative Linear Quadratic Regulator ( iLQR ) 
approach is used to discard the Hessians of the dynamics . 

Labz as , Tav , 
Qs = ? als 

( lz + V ) + b7 ass ass 
+ 
ads oss 

ZEZ 

( 8 ) 
Qu = ? » [ 6 ?? , a su 

+ 
as , Tav 
adu sa 

ZEZ 

forward pass . Although this approach differentiates the raw belief b ,, the 
re - parameterization described above makes these deriva 
tives well - behaved near the simplex boundary , where the 
derivatives take on small values for extremal beliefs , and 
small perturbations ds do not violate the simplex constraint . 
The 

as ' ? s 
ads and adu 

[ 0074 ] The PODDP backward pass operates over a trajec 
tory tree , proceeding from the leaves and propagating the 
values through the observation and belief updates that take 
place at each node . FIG . 5B illustrates an example of an 
algorithm 504 for a backward pass according to an embodi 
ment . The algorithm 504 traverses the trajectory tree in 
depth - first order , and propagates the necessary derivatives 
backward through the tree recursively . The algorithm 504 
includes performing the second - order approximation to the 
value function and returning the derivates and control 
updates to be propagated backward through the trajectory 
tree . 

[ 0075 ] Dynamic programming over the trajectory tree 
requires differentiation through the belief space dynamics at 
each observation and belief update . However , differentiating 
the raw belief state is problematic , because perturbations can 
push the belief off the KZ1-1 - dimensional simplex . 
[ 0076 ] To resolve this issue , the belief state may be 
re - parameterized in terms of the unconstrained parameter 
BER 12 , such that : 

terms involve differentiating through the dynamics , obser 
vation model , and belief update . The aV'las ' , and a Vilas ' , 
terms are the backward derivatives propagated within the A 
argument in algorithm 504 of FIG . 5B . 
[ 0079 ] In this example , the optimal control modification 
du * for belief state perturbation ds is computed by mini 
mizing the quadratic model ? : 

Su * ( ds ) = arg min ?ids , du ) = k + Kos , ( 9 ) 

b ( z ; B ) = exp ( B ( z ) ) 
Ezezexp ( B ( z ' ) ) 

and the belief space takes the form S = XxR 12. The re 
parameterized belief update naturally derives from the algo 
rithm 502 , of FIG . 5A , such that Bt + 1 ( z ) = log ( bz + 1 ( z ) ) . 
[ 0077 ] To complete the derivation of the backward pass 
for PODDP , the state - action value function may be defined 
to operate over perturbations of s and u : 

where k = -Qu'Q , is an open - loop modification to be 
applied in the forward pass , and K = Quu - ' Qus is a linear 
closed - loop feedback gain . 
[ 0080 ] 4. Hierarchical PODDP 
[ 0081 ] Because each node in the trajectory tree has IZI 
successor nodes , the tree has size ( IZI ? -1 ) / ( IZI - 1 ) = O ( IZ17 ) . 
This exponential growth is manageable for short horizons 
( e.g. , T < 5 ) , but may be infeasible for longer horizons ( e.g. , 
such as those required for some robotics tasks ) . However , 
branching on every timestep may be unnecessary for several 
reasons . First , many robotics systems have high control 
frequency , but much lower state estimation frequency , par 
ticularly for sensor fusion from multiple modalities ( e.g. , 
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cameras , lidar , etc. ) . In such cases , observation timesteps in 
the planner may be aligned with times when observations 
are expected to occur in the system . Second , planning with 
a lower observation frequency than that of the actual system 
may yield trajectories that take observation contingencies 
into account but are more conservative than those that 
observe at every timestep . 
[ 0082 ] In this example , to derive a hierarchical PODDP 
algorithm , the derivation above may be followed , but with 
the trajectory partitioned into a set of k segments indexed by 
To = 0 , T1 , . . . , TE = T . The value of the belief state at the 
beginning of a segment may be defined similar to equation 
( 3 ) above , but accumulating the cost over ti + 1 - T ; steps , and 
taking the expected value of the belief state at the end of 
Ti + 1 - T ; steps : 

is parameterized by a smooth function that outputs the 
variance of the distributions , illustrated by the background 
gradient of diagram 604 . 
[ 0087 ] Diagram 602 of FIG . 6A compares the average 
cumulative cost incurred by PODDP versus the two baseline 
models , over 100 sampled executions in each of thirteen 
environments , each with a different level of observation 
uncertainty . PODDP outperformed both baselines and 
exhibited lower variance . 
[ 0088 ] Diagram 604 of FIG . 6A illustrates a trajectory tree 
optimized by PODDP , starting from the belief b ( z = Left ) = 0 . 
51. The tree includes a contingency plan for all possible 
maximum - likelihood outcome sequences , conditioned on 
the latent state values . Diagram 606 of FIG . 6A illustrates 
the 100 executed trajectories used in diagram 602 for 
uncertainty level = 9.1 , sampling observations and state tran 
sitions from their true distributions . Among the executed 
trajectories are some in which the agent first moved to one 
side , then crossed back to seek the goal on the other side . 
These correspond to " bad ” observations , which indicate the 
incorrect latent state . Diagram 604 illustrates that PODDP 
plans for such contingencies , and Diagram 606 illustrates 
that it handles them gracefully , by responding conserva 
tively to noisy observations so that recovery is possible 
following later , better observations . 
[ 0089 ] Table 1 , below , shows the results of a targeted 
analysis on the mean cumulative cost incurred by each 
model over 1000 executions for observation uncertainty 
level = 9.1 . PODDP incurred significantly less mean cumu 
lative cost than MLDDP ( t ( 1998 ) = 15.1 , p < 0.00001 ) , and 
PODDP also incurred significantly less mean cumulative 
cost than PWDDP ( t ( 1998 ) = 18.9 , p < 0.00001 ) . The mean 
cumulative costs incurred by MLDDP and PWDDP were not 
significantly different ( t ( 1998 ) = 0.01 , p = 0.96 ) . 

V ( Xt ;, bry ) = ( 10 ) 

7i + 1-1 
Ezubi l ( xs , the , 2 ) + L - Eolith – 1,37i + 7 [ V " ( Xti + 1 , btitl ) ] 

T = Ti 

TABLE 1 

Mean cumulative cost ( standard error in parentheses ) incurred 
by each model in Experiment 1 over 1000 samples . 

PODDP MLDDP PWDDP 

13330.6 ( 244.5 ) 23839.8 ( 649.1 ) 23878.5 ( 500.7 ) 

The second - order expansion may be taken similar to the 
description above , but with respect to perturbations of each 
segment . Hierarchical dynamic programming may be further 
optimized by applying DDP recursions to each step of a 
segment . The scenarios described below use hierarchical 
PODDP with k = 3 . 
[ 0083 ] B. Scenarios 
[ 0084 ] As noted above , PODDPs provide a trajectory 
optimization approach for solving nonlinear POMDPs 
involving continuous states , actions , and observations , with 
non - Gaussian beliefs over discrete latent variables . FIGS . 
6A - 6C illustrate examples of latent belief space planning 
scenarios according to an embodiment . These examples are 
based on experiments in which PODDP was compared 
against two baselines . The first baseline , “ maximum - likeli 
hood DDP ” ( MLDDP ) , assumes the latent state with the 
highest probability is the true latent state , and runs standard 
DDP . At each observation point , MLDDP re - plans based on 
the updated most - likely belief . The second baseline , “ Prob 
ability - weighted DDP ” ( PWDDP ) , minimizes the expected 
cost of a control sequence with respect to the current belief , 
using a version of equation ( 9 ) , with k = 1 and Tz equal to the 
horizon length . 
[ 0085 ] 1. Planning Under Cost Uncertainty 
[ 0086 ] In the scenario illustrated in FIG . 6A , the location 
of a goal is unknown , and determined by the latent world 
state . The environment is structured as a “ T - Maze ” : a long 
corridor that is surrounded by high - cost regions and splits 
left and right at the end . A binary latent state determines 
whether the goal is on the Left or Right . Goal costs that 
increase quadratically with the distance from the true goal 
location induce the agent to move to the goal as quickly as 
possible . Diagram 604 of FIG . 6A illustrates this environ 
ment , with a contour plot of the location cost overlaid , and 
goal locations marked with X’s . The agent is a simulated 
vehicle with non - holonomic bicycle dynamics . The obser 
vation function generates a Gaussian random variable con 
ditioned on the latent state z : the mean is -1 if z = Left and 
1 if z = Right . The uncertainty of the observation decreases as 
the vehicle moves to the end of the maze . This uncertainty 

[ 0090 ] 2. Planning Under Dynamic Mode Uncertainty 
[ 0091 ] The scenario illustrated in FIG . 6B is based on an 
experiment designed to test whether PODDP can plan in the 
belief space over uncertain , partially observable dynamical 
modes of the environment . In this scenario , as illustrated in 
diagram 608 of FIG . 6B , a simulated vehicle with non 
holonomic bicycle dynamics was moving toward a goal 
( marked by an X ) over rough terrain ( e.g. , “ mud ” ) , which 
exerts a resistive force while the vehicle is moving . The 
terrain thus imposes cost due to the additional force required 
to maintain a constant velocity . A binary latent state deter 
mines the smoothness of the terrain to the right of the 
vehicle : when the latent state z = Smooth , the terrain to the 
right exerts low resistive force ; when z = Rough , the terrain 
to the right is rough , with high resistive force equal to that 
on the left . Diagram 608 illustrates the gradient from rough 
to smooth terrain , going from left to right when the latent 
state is Smooth . 
[ 0092 ] In this example , the only source of information 
about the latent state comes from observing the dynamics 
themselves via the state sequence . This presents a challeng 
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attributable to the maximum likelihood initial belief being 
Aggressive , leading MLDDP to immediately decelerate and 
lose the chance to pass . By way of comparison , 1000 
additional sample executions were run with b ( Nice ) = 0.51 . 
With this prior , MLDDP succeeded at passing the Nice 
driver and changing lanes behind the Aggressive driver , but 
incurred a higher mean cumulative cost , as shown in Table 
3. Running PODDP and PWDDP in this modified condition , 
the mean cumulative costs were not significantly different 
than with the other prior . 

ing planning problem : exploring the environment to infer the 
value of z requires a costly detour right into the potentially 
smooth area , but the payoff is large if the agent can learn that 
the terrain is smooth and reduce the cost thereafter . 
[ 0093 ] Diagram 608 illustrates that PODDP plans an 
exploratory policy to learn the value of z . The planned 
trajectory , starting from the belief b ( z = Smooth ) = 0.49 , 
immediately moves to the right to gain information about z . 
The first observation yields strong information about z , and 
the beliefs become near - certain , which the conditional plan 
can then exploit - either by veering into the smooth area or 
by heading directly through the mud to the goal location . 
Diagram 610 of FIG . 6B illustrates 100 sampled executions 
through the rough terrain environment , demonstrating the 
robustness of the planned PODDP trajectory tree . 
[ 0094 ] Table 2 , below , reports the mean cumulative cost 
over 1000 executions for each model . PODDP incurred 
significantly lower mean cumulative cost than both MLDDP , 
( t ( 1998 ) = 3.9 , p = 0.00008 ) and PWDDP ( t ( 1998 ) = 2.7 , p = 0 . 
007 ) . The mean cumulative costs incurred by MLDDP and 
PWDDP were not significantly different ( t ( 1998 ) = 0.41 , p = 0 . 
68 ) . 

TABLE 3 

Mean cumulative cost ( standard error in parentheses ) incurred 
by each model in Experiment 3 over 1000 samples . 

MLDDP 
( bo ( Nice ) = 0.51 ) PODDP MLDDP PWDDP 

121.3 ( 0.46 ) 130.3 ( 1.6 ) 152.1 ( 2.0 ) 143.2 ( 2.0 ) 

[ 0098 ] As the examples above demonstrate , PODDP is 
capable of planning trajectories in a wide range of scenarios , 
with high success and low cost when compared with other 
approaches . TABLE 2 

Mean cumulative cost ( standard error in parentheses ) incurred 
by each model in Experiment 2 over 1000 samples . 

PODDP MLDDP PWDDP 

22110.7 ( 124.4 ) 22710.7 ( 87.3 ) 22639.5 ( 151.9 ) 

V. Miscellaneous ; Extensions 
[ 0099 ] In an embodiment , a system includes one or more 
devices , including one or more hardware processors , that are 
configured to perform any of the operations described herein 
and / or recited in any of the claims . 
[ 0100 ] In an embodiment , one or more non - transitory 
computer - readable storage media store instructions that , 
when executed by one or more hardware processors , cause 
performance of any of the operations described herein 
and / or recited in any of the claims . 
[ 0101 ] Any combination of the features and functionalities 
described herein may be used in accordance with an embodi 
ment . In the foregoing specification , embodiments have 
been described with reference to numerous specific details 
that may vary from implementation to implementation . 
Accordingly , the specification and figures are to be regarded 
in an illustrative rather than a restrictive sense . The sole and 
exclusive indicator of the scope of the invention , and what 
is intended by the Applicant to be the scope of the invention , 
is the literal and equivalent scope of the set of claims that 
issue from this application , in the specific form in which 
such claims issue , including any subsequent correction . 

[ 0095 ] 3. Latent Intention - Aware Interactive Lane Chang 
ing 
[ 0096 ] The scenario illustrated in FIG . 6C is based on an 
experiment designed to test the ability of PODDP to plan 
trajectories through a belief state that includes the latent 
intentions of other agents , and dynamics that capture agents ' 
intention - dependent actions . This scenario includes another 
vehicle in the state space , parameterized by a longitude and 
velocity ( the planner vehicle again has bicycle dynamics ) . 
The other vehicle dynamics are modeled using a modified 
Intelligent Driver Model ( IDM ) , with a smooth boundary 
function for identifying the leading vehicle . The latent state 
represents whether the other driver is Nice or Aggressive . If 
the other driver is Nice , it is assumed to have a lower desired 
speed and to slow down for others . If the other driver is 
Aggressive , it is assumed to have a higher desired speed and 
to not slow down for others . 
[ 0097 ] FIG . 6C illustrates that PODDP can plan in the 
belief space of the other vehicle's latent state ; it can con 
struct a contingency plan to change lanes ahead of the other 
vehicle if the other vehicle is inferred to be Nice , or change 
lanes behind the other vehicle if the other vehicle is inferred 
to be Aggressive . Diagrams 614 and 616 of FIG . 6C illus 
trate the successful execution of these plans . PWDDP also 
succeeded at changing lanes ahead of the Nice driver and 
changing lanes behind the Aggressive driver . However , as 
shown in Table 3 below , over 1000 sample executions , 
PWDDP incurred significantly higher cost than both 
PODDP ( t ( 1998 ) = 14.8 , p < 0.00001 ) and MLDDP ( t ( 1998 ) 
= 8.3 , p < 0.00001 ) . In contrast , MLDDP failed to pass the 
Nice driver and always changed lanes behind both the Nice 
and Aggressive drivers , while incurring significantly higher 
cost than PODDP ( t ( 1998 ) = 5.3 , p < 0.00001 ) . This result was 

VI . Computer Systems 
[ 0102 ] In an embodiment , techniques described herein are 
implemented by one or more special - purpose computing 
devices ( i.e. , computing devices specially configured to 
perform certain functionality ) . The special - purpose comput 
ing device ( s ) may be hard - wired to perform the techniques 
and / or may include digital electronic devices such as one or 
more application - specific integrated circuits ( ASICs ) , field 
programmable gate arrays ( FPGAs ) , and / or network pro 
cessing units ( NPUs ) that are persistently programmed to 
perform the techniques . Alternatively or additionally , a 
computing device may include one or more general - purpose 
hardware processors programmed to perform the techniques 
pursuant to program instructions in firmware , memory , 
and / or other storage . Alternatively or additionally , a special 
purpose computing device may combine custom hard - wired 
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logic , ASICS , FPGAs , or NPUs with custom programming 
to accomplish the techniques . A special - purpose computing 
device may include a desktop computer system , portable 
computer system , handheld device , networking device , and / 
or any other device ( s ) incorporating hard - wired and / or pro gram logic to implement the techniques . 
[ 0103 ] For example , FIG . 7 is a block diagram of an 
example of a computer system 700 according to an embodi 
ment . Computer system 700 includes a bus 702 or other 
communication mechanism for communicating information , 
and a hardware processor 704 coupled with the bus 702 for 
processing information . Hardware processor 704 may be a 
general - purpose microprocessor . 
[ 0104 ) Computer system 700 also includes a main 
memory 706 , such as a random access memory ( RAM ) or 
other dynamic storage device , coupled to bus 702 for storing 
information and instructions to be executed by processor 
704. Main memory 706 also may be used for storing 
temporary variables or other intermediate information dur 
ing execution of instructions to be executed by processor 
704. Such instructions , when stored in one or more non 
transitory storage media accessible to processor 704 , render 
computer system 700 into a special - purpose machine that is 
customized to perform the operations specified in the 
instructions . 
[ 0105 ] Computer system 700 further includes a read only 
memory ( ROM ) 708 or other static storage device coupled 
to bus 702 for storing static information and instructions for 
processor 704. A storage device 710 , such as a magnetic disk 
or optical disk , is provided and coupled to bus 702 for 
storing information and instructions . 
[ 0106 ] Computer system 700 may be coupled via bus 702 
to a display 712 , such as a liquid crystal display ( LCD ) , 
plasma display , electronic ink display , cathode ray tube 
( CRT ) monitor , or any other kind of device for displaying 
information to a computer user . An input device 714 , includ 
ing alphanumeric and other keys , may be coupled to bus 702 
for communicating information and command selections to 
processor 704. Alternatively or additionally , computer sys 
tem 700 may receive user input via cursor control 716 , 
such as a mouse , a trackball , a trackpad , or cursor direction 
keys for communicating direction information and com 
mand selections to processor 704 and for controlling cursor 
movement on display 712. This input device typically has 
two degrees of freedom in two axes , a first axis ( e.g. , x ) and 
a second axis ( e.g. , y ) , that allows the device to specify 
positions in a plane . Alternatively or additionally , computer 
system 7 may include a touchscreen . Display 712 may be 
configured to receive user input via one or more pressure 
sensitive sensors , multi - touch sensors , and / or gesture sen 
sors . Alternatively or additionally , computer system 700 
may receive user input via a microphone , video camera , 
and / or some other kind of user input device ( not shown ) . 
[ 0107 ] Computer system 700 may implement the tech 
niques described herein using customized hard - wired logic , 
one or more ASICs or FPGAs , firmware , and / or program 
logic which in combination with other components of com 
puter system 700 causes or programs computer system 700 
to be a special - purpose machine . According to one embodi 
ment , the techniques herein are performed by computer 
system 700 in response to processor 704 executing one or 
more sequences of one or more instructions contained in 
main memory 706. Such instructions may be read into main 
memory 706 from another storage medium , such as storage 

device 710. Execution of the sequences of instructions 
contained in main memory 706 causes processor 704 to 
perform the process steps described herein . Alternatively or 
additionally , hard - wired circuitry may be used in place of or 
in combination with software instructions . 
[ 0108 ] The term “ storage media ” as used herein refers to 
one or more non - transitory media storing data and / or 
instructions that cause a machine to operate in a specific 
fashion . Such storage media may comprise non - volatile 
media and / or volatile media . Non - volatile media includes , 
for example , optical or magnetic disks , such as storage 
device 710. Volatile media includes dynamic memory , such 
as main memory 706. Common forms of storage media 
include , for example , a floppy disk , a flexible disk , hard disk , 
solid state drive , magnetic tape or other magnetic data 
storage medium , a CD - ROM or any other optical data 
storage medium , any physical medium with patterns of 
holes , a RAM , a programmable read - only memory ( PROM ) , 
an erasable PROM ( EPROM ) , a FLASH - EPROM , non 
volatile random - access memory ( NVRAM ) , any other 
memory chip or cartridge , content - addressable memory 
( CAM ) , and ternary content - addressable memory ( TCAM ) . 
[ 0109 ] A storage medium is distinct from but may be used 
in conjunction with a transmission medium . Transmission 
media participate in transferring information between stor 
age media . Examples of transmission media include coaxial 
cables , copper wire , and fiber optics , including the wires that 
comprise bus 702. Transmission media may also take the 
form of acoustic or light waves , such as those generated 
during radio - wave and infra - red data communications . 
[ 0110 ] Various forms of media may be involved in carry 
ing one or more sequences of one or more instructions to 
processor 704 for execution . For example , the instructions 
may initially be carried on a magnetic disk or solid state 
drive of a remote computer . The remote computer may load 
the instructions into its dynamic memory and send the 
instructions over a network , via a network interface control 
ler ( NIC ) , such as an Ethernet controller or Wi - Fi controller . 
A NIC local to computer system 700 may receive the data 
from the network and place the data on bus 702. Bus 702 
carries the data to main memory 706 , from which processor 
704 retrieves and executes the instructions . The instructions 
received by main memory 706 may optionally be stored on 
storage device 710 either before or after execution by 
processor 704 . 
[ 0111 ] Computer system 700 also includes a communica 
tion interface 718 coupled to bus 702. Communication 
interface 718 provides a two - way data communication cou 
pling to a network link 720 that is connected to a local 
network 722. For example , communication interface 718 
may be an integrated services digital network ( ISDN ) card , 
cable modem , satellite modem , or a modem to provide a data 
communication connection to a corresponding type of tele 
phone line . As another example , communication interface 
718 may be a local area network ( LAN ) card to provide a 
data communication connection to a compatible LAN . Wire 
less links may also be implemented . In any such implemen 
tation , communication interface 718 sends and receives 
electrical , electromagnetic or optical signals that carry digi 
tal data streams representing various types of information . 
[ 0112 ] Network link 720 typically provides data commu 
nication through one or more networks to other data devices . 
For example , network link 720 may provide a connection 
through local network 722 to a host computer 724 or to data 
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equipment operated by an Internet Service Provider ( ISP ) 
726. ISP 726 in turn provides data communication services 
through the world wide packet data communication network 
now commonly referred to as the “ Internet ” 728. Local 
network 722 and Internet 728 both use electrical , electro 
magnetic or optical signals that carry digital data streams . 
The signals through the various networks and the signals on 
network link 720 and through communication interface 718 , 
which carry the digital data to and from computer system 
700 , are example forms of transmission media . 
[ 0113 ] Computer system 700 can send messages and 
receive data , including program code , through the network 
( s ) , network link 720 and communication interface 718. In 
the Internet example , a server 730 might transmit a 
requested code for an application program through Internet 
728 , ISP 726 , local network 722 , and communication inter 
face 718 . 
[ 0114 ] The received code may be executed by processor 
704 as it is received , and / or stored in storage device 710 , or 
other non - volatile storage for later execution . 

VII . Networks and Cloud Computing 
[ 0115 ] In an embodiment , a computer network provides 
connectivity among a set of nodes running software that 
utilizes techniques as described herein . The nodes may be 
local to and / or remote from each other . The nodes are 
connected by a set of links . Examples of links include a 
coaxial cable , an unshielded twisted cable , a copper cable , 
an optical fiber , and a virtual link . 
[ 0116 ] A subset of nodes implements the co puter net 
work . Examples of such nodes include a switch , a router , a 
firewall , and a network address translator ( NAT ) . Another 
subset of nodes uses the computer network . Such nodes ( also 
referred to as “ hosts ” ) may execute a client process and / or 
a server process . A client process makes a request for a 
computing service ( for example , a request to execute a 
particular application and / or retrieve a particular set of data ) . 
A server process responds by executing the requested ser 
vice and / or returning corresponding data . 
[ 0117 ] A computer network may be a physical network , 
including physical nodes connected by physical links . A 
physical node is any digital device . A physical node may be 
a function - specific hardware device . Examples of function 
specific hardware devices include a hardware switch , a 
hardware router , a hardware firewall , and a hardware NAT . 
Alternatively or additionally , a physical node may be any 
physical resource that provides compute power to perform a 
task , such as one that is configured to execute various virtual 
machines and / or applications performing respective func 
tions . A physical link is a physical medium connecting two 
or more physical nodes . Examples of links include a coaxial 
cable , an unshielded twisted cable , a copper cable , and an 
optical fiber . 
[ 0118 ] A computer network may be an overlay network . 
An overlay network is a logical network implemented on top 
of another network ( for example , a physical network ) . Each 
node in an overlay network corresponds to a respective node 
in the underlying network . Accordingly , each node in an 
overlay network is associated with both an overlay address 
( to address the overlay node ) and an underlay address ( to 
address the underlay node that implements the overlay 
node ) . An overlay node may be a digital device and / or a 
software process ( for example , a virtual machine , an appli 
cation instance , or a thread ) . A link that connects overlay 

nodes may be implemented as a tunnel through the under 
lying network . The overlay nodes at either end of the tunnel 
may treat the underlying multi - hop path between them as a 
single logical link . Tunneling is performed through encap 
sulation and decapsulation . 
[ 0119 ] In an embodiment , a client may be local to and / or 
remote from a computer network . The client may access the 
computer network over other computer networks , such as a 
private network or the Internet . The client may communicate 
requests to the computer network using a communications 
protocol , such as Hypertext Transfer Protocol ( HTTP ) . The 
requests are communicated through an interface , such as a 
client interface ( such as a web browser ) , a program interface , 
or an application programming interface ( API ) . 
[ 0120 ] In an embodiment , a computer network provides 
connectivity between clients and network resources . Net 
work resources include hardware and / or software configured 
to execute server processes . Examples of network resources 
include a processor , a data storage , a virtual machine , a 
container , and / or a software application . Network resources 
may be shared amongst multiple clients . Clients request 
computing services from a computer network independently 
of each other . Network resources are dynamically assigned 
to the requests and / or clients on an on - demand basis . Net 
work resources assigned to each request and / or client may 
be scaled up or down based on , for example , ( a ) the 
computing services requested by a particular client , ( b ) the 
aggregated computing services requested by a particular 
tenant , and / or ( c ) the aggregated computing services 
requested of the computer network . Such a computer net 
work may be referred to as a “ cloud network . " 
[ 0121 ] In an embodiment , a service provider provides a 
cloud network to one or more end users . Various service 
models may be implemented by the cloud network , includ 
ing but not limited to Software - as - a - Service ( SaaS ) , Plat 
form - as - a - Service ( PaaS ) , and Infrastructure - as - a - Service 
( IaaS ) . In SaaS , a service provider provides end users the 
capability to use the service provider's applications , which 
are executing on the network resources . In PaaS , the service 
provider provides end users the capability to deploy custom 
applications onto the network resources . The custom appli 
cations may be created using programming languages , 
libraries , services , and tools supported by the service pro 
vider . In IaaS , the service provider provides end users the 
capability to provision processing , storage , networks , and 
other fundamental computing resources provided by the 
network resources . Any applications , including an operating 
system , may be deployed on the network resources . 
[ 0122 ] In an embodiment , various deployment models 
may be implemented by a computer network , including but 
not limited to a private cloud , a public cloud , and a hybrid 
cloud . In a private cloud , network resources are provisioned 
for exclusive use by a particular group of one or more 
entities ( the term " entity ” as used herein refers to a corpo 
ration , organization , person , or other entity ) . The network 
resources may be local to and / or remote from the premises 
of the particular group of entities . In a public cloud , cloud 
resources are provisioned for multiple entities that are 
independent from each other ( also referred to as “ tenants ” or 
" customers ” ) . In a hybrid cloud , a computer network 
includes a private cloud and a public cloud . An interface 
between the private cloud and the public cloud allows for 
data and application portability . Data stored at the private 
cloud and data stored at the public cloud may be exchanged 
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through the interface . Applications implemented at the pri 
vate cloud and applications implemented at the public cloud 
may have dependencies on each other . A call from an 
application at the private cloud to an application at the public 
cloud ( and vice versa ) may be executed through the inter 
face . 
[ 0123 ] In an embodiment , a system supports multiple 
tenants . A tenant is a corporation , organization , enterprise , 
business unit , employee , or other entity that accesses a 
shared computing resource ( for example , a computing 
resource shared in a public cloud ) . One tenant ( through 
operation , tenant - specific practices , employees , and / or iden 
tification to the external world ) may be separate from 
another tenant . The computer network and the network 
resources thereof are accessed by clients corresponding to 
different tenants . Such a computer network may be referred 
to as a “ multi - tenant computer network . ” Several tenants 
may use a same particular network resource at different 
times and / or at the same time . The network resources may 
be local to and / or remote from the premises of the tenants . 
Different tenants may demand different network require 
ments for the computer network . Examples of network 
requirements include processing speed , amount of data 
storage , security requirements , performance requirements , 
throughput requirements , latency requirements , resiliency 
requirements , Quality of Service ( QoS ) requirements , tenant 
isolation , and / or consistency . The same computer network 
may need to implement different network requirements 
demanded by different tenants . 
[ 0124 ] In an embodiment , in a multi - tenant computer 
network , tenant isolation is implemented to ensure that the 
applications and / or data of different tenants are not shared 
with each other . Various tenant isolation approaches may be 
used . In an embodiment , each tenant is associated with a 
tenant ID . Applications implemented by the computer net 
work are tagged with tenant IDs . Additionally or alterna 
tively , data structures and / or datasets , stored by the com 
puter network , are tagged with tenant IDs . A tenant is 
permitted access to a particular application , data structure , 
and / or dataset only if the tenant and the particular applica 
tion , data structure , and / or dataset are associated with a same 
tenant ID . As an example , each database implemented by a 
multi - tenant computer network may be tagged with a tenant 
ID . Only a tenant associated with the corresponding tenant 
ID may access data of a particular database . As another 
example , each entry in a database implemented by a multi 
tenant computer network may be tagged with a tenant ID . 
Only a tenant associated with the corresponding tenant ID 
may access data of a particular entry . However , the database 
may be shared by multiple tenants . A subscription list may 
indicate which tenants have authorization to access which 
applications . For each application , a list of tenant IDs of 
tenants authorized to access the application is stored . A 
tenant is permitted access to a particular application only if 
the tenant ID of the tenant is included in the subscription list 
corresponding to the particular application . 
[ 0125 ] In an embodiment , network resources ( such as 
digital devices , virtual machines , application instances , and 
threads ) corresponding to different tenants are isolated to 
tenant - specific overlay networks maintained by the multi 
tenant computer network . As an example , packets from any 
source device in a tenant overlay network may only be 
transmitted to other devices within the same tenant overlay 
network . Encapsulation tunnels may be used to prohibit any 

transmissions from a source device on a tenant overlay 
network to devices in other tenant overlay networks . Spe 
cifically , the packets , received from the source device , are 
encapsulated within an outer packet . The outer packet is 
transmitted from a first encapsulation tunnel endpoint in 
communication with the source device in the tenant overlay 
network ) to a second encapsulation tunnel endpoint in 
communication with the destination device in the tenant 
overlay network ) . The second encapsulation tunnel endpoint 
decapsulates the outer packet to obtain the original packet 
transmitted by the source device . The original packet is 
transmitted from the second encapsulation tunnel endpoint 
to the destination device in the same particular overlay 
network . 
What is claimed is : 
1. One or more non - transitory computer - readable media 

storing instructions that , when executed by one or more 
processors , cause the one or more processors to perform 
operations comprising : 

during execution of an autonomous agent configured to 
control operation of a physical mechanism , obtaining a 
current observation of a physical environment ; 

based at least on the current observation of the physical 
environment , generating a trajectory tree that repre 
sents a plurality of possible trajectories in a belief 
space , 
wherein a plurality of nodes of the trajectory tree 

represent values of a continuous observation , a con 
tinuous state , and a continuous control , each node 
being associated with one of a plurality of timesteps 
along the plurality of possible trajectories , and 

wherein branches from inner nodes to child nodes in 
the plurality of nodes correspond to possible out 
comes and observations of a multi - modal latent state ; 

determining a current value of the continuous control 
associated with a current node of the plurality of nodes ; 
and 

applying the current value of the continuous control to 
operation of the physical mechanism . 

2. The one or more non - transitory computer - readable 
media of claim 1 , wherein generating the trajectory tree 
comprises : 

( a ) in a first forward pass , initializing the values of the 
continuous control for the plurality of nodes ; 

( b ) in a backward pass , starting at a plurality of leaf nodes 
in the plurality of nodes , propagating results of a 
derivative function through parent nodes in the plural 
ity of nodes ; and 

( c ) in a second forward pass , applying an optimization 
function to values of the continuous control , based at 
least on the results of the derivative function . 

3. The one or more non - transitory computer - readable 
media of claim 2 , wherein ( b ) and ( c ) are repeated iteratively 
until an optimization termination criterion is satisfied . 

4. The one or more non - transitory computer - readable 
media of claim 2 , wherein the first forward pass comprises 
generating the plurality of nodes at least by : 

( i ) generating a root node of the trajectory tree , based at 
least on the current observation ; 

( ii ) determining a plurality of maximum likelihood out 
comes for a plurality of modes of the multi - modal 
latent state associated with the current observation ; 
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( iii ) determining a plurality of maximum likelihood obser 
vations associated with the plurality of maximum like 
lihood outcomes ; 

( iv ) generating a plurality of child nodes of the root node , 
corresponding to the plurality of maximum likelihood 
outcomes and the plurality of maximum likelihood 
observations ; and 

( v ) performing ( ii ) , ( iii ) , and ( iv ) recursively , starting at 
the plurality of child nodes of the root node , until a 
finite horizon is reached . 

5. The one or more non - transitory computer - readable 
media of claim 2 , wherein the first forward pass comprises 
generating the plurality of nodes at least by : 

( i ) generating a root node of the trajectory tree , based at 
least on the current observation ; 

( ii ) sampling a plurality of possible outcomes from a 
belief distribution associated with the current observa 
tion ; 

( iii ) sampling a plurality of possible observations associ 
ated with the plurality of possible outcomes ; 

( iv ) generating a plurality of child nodes of the root node , 
corresponding to the plurality of possible outcomes and 
the plurality of possible observations ; and 

( v ) performing ( ii ) , ( iii ) , and ( iv ) recursively , starting at 
the plurality of child nodes of the root node , until a 
finite horizon is reached . 

6. The one or more non - transitory computer - readable 
media of claim 1 , wherein generating the trajectory tree 
comprises updating values in a preexisting data structure 
that represents the trajectory tree . 

7. The one or more non - transitory computer - readable 
media of claim 1 , wherein timesteps associated with the 
plurality of nodes are separated by time intervals that are 
greater than a sampling rate used by one or more autono 
mous agent sensors providing values of the continuous 
observation . 

8. The one or more non - transitory computer - readable 
media of claim 1 , wherein the continuous state is a partially 
observable continuous state . 

9. The one or more non - transitory computer - readable 
media of claim 1 , wherein the multi - modal latent state is 
bimodal . 

10. The one or more non - transitory computer - readable 
media of claim 1 , wherein the physical mechanism is a 
steering mechanism of a vehicle . 

11. One or more non - transitory computer - readable media 
storing instructions that , when executed by one or more 
processors , cause the one or more processors to perform 
operations comprising : 

during execution of an autonomous agent configured to 
control operation of a physical mechanism , generating 
a trajectory tree that represents a plurality of possible 
trajectories in a belief space , 
wherein a plurality of nodes of the trajectory tree 

represent values of a continuous observation , a con 
tinuous state , and a continuous control , each node 
being associated with one of a plurality of timesteps 
along the plurality of possible trajectories , and 

wherein branches from inner nodes to child nodes in 
the plurality of nodes correspond to possible out 
comes and observations of a multi - modal latent state ; 

determining that a current observation corresponds most 
closely to a closest - fit node in the plurality of nodes ; 

obtaining a current value of the continuous control asso 
ciated with the closest - fit node ; and 

applying the current value of the continuous control to 
operation of the physical mechanism . 

12. The one or more non - transitory computer - readable 
media of claim 11 , wherein generating the trajectory tree 
comprises : 

( a ) in a first forward pass , initializing the values of the 
continuous control for the plurality of nodes ; 

( b ) in a backward pass , starting at a plurality of leaf nodes 
in the plurality of nodes , propagating results of a 
derivative function through parent nodes in the plural 
ity of nodes ; and 

( c ) in a second forward pass , applying an optimization 
function to values of the continuous control , based at 
least on the results of the derivative function . 

13. The one or more non - transitory computer - readable 
media of claim 12 , wherein ( b ) and ( c ) are repeated itera 
tively until an optimization termination criterion is satisfied . 

14. The one or more non - transitory computer - readable 
media of claim 12 , wherein the first forward pass comprises 
generating the plurality of nodes at least by : 

( i ) generating a root node of the trajectory tree , based at 
least on an initial observation ; 

( ii ) determining a plurality of maximum likelihood out 
comes for a plurality of modes of the multi - modal 
latent state associated with the initial observation ; 

( iii ) determining a plurality of maximum likelihood obser 
vations associated with the plurality of maximum like 
lihood outcomes ; 

( iv ) generating a plurality of child nodes of the root node , 
corresponding to the plurality of maximum likelihood 
outcomes and the plurality of maximum likelihood 
observations ; and 

( v ) performing ( ii ) , ( iii ) , and ( iv ) recursively , starting at 
the plurality of child nodes of the root node , until a 
finite horizon is reached . 

15. The one or more non - transitory computer - readable 
media of claim 12 , wherein the first forward pass comprises 
generating the plurality of nodes at least by : 

( i ) generating a root node of the trajectory tree , based at 
least on an initial observation ; 

( ii ) sampling a plurality of possible outcomes from a 
belief distribution associated with the initial observa 
tion ; 

( iii ) sampling a plurality of possible observations associ 
ated with the plurality of possible outcomes ; 

( iv ) generating a plurality of child nodes of the root node , 
corresponding to the plurality of possible outcomes and 
the plurality of possible observations ; and 

( v ) performing ( ii ) , ( iii ) , and ( iv ) recursively , starting at 
the plurality of child nodes of the root node , until a 
finite horizon is reached . 

16. The one or more non - transitory computer - readable 
media of claim 11 , the operations further comprising : 

adjusting the current value of the continuous control 
based at least on a difference between the current 
observation and possible value of the continuous 
observation associated with the particular node . 

17. The one or more non - transitory computer - readable 
media of claim 11 , wherein timesteps associated with the 
plurality of nodes are separated by time intervals that are 
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greater than a sampling rate used by one or more autono 
mous agent sensors providing values of the continuous 
observation . 

18. The one or more non - transitory computer - readable 
media of claim 11 , wherein the continuous state is a par 
tially - observable continuous state . 

19. The one or more non - transitory computer - readable 
media of claim 11 , wherein the multi - modal latent state is 
bimodal . 

20. The one or more non - transitory computer - readable 
media of claim 11 , wherein the physical mechanism is a 
steering mechanism of a vehicle . 


