
US 20210048823A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0048823 A1

Qiu et al . (43) Pub . Date : Feb. 18 , 2021

(54) LATENT BELIEF SPACE PLANNING USING
A TRAJECTORY TREE

(52) U.S. CI .
CPC G05D 1/0212 (2013.01) ; G05B 19/042

(2013.01) ; G05D 2201/0213 (2013.01) ; G05D
1/0088 (2013.01) ; G05B 2219/2637 (2013.01) ;

B62D 6/00 (2013.01)
(71) Applicant : isee , Cambridge , MA (US)
(72) Inventors : Dicong Qiu , Pittsburgh , PA (US) ;

Yibiao Zhao , Cambridge , MA (US) ;
Chris L. Baker , Pittsburgh , PA (US)

(57) ABSTRACT

(21) Appl . No .: 16 / 994,040
(22) Filed : Aug. 14 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 887,996 , filed on Aug.

16 , 2019 .

Techniques for latent belief space planning include : during
execution of an autonomous agent configured to control
operation of a physical mechanism , obtaining a current
observation of a physical environment ; based at least on the
current observation of the physical environment , generating
a trajectory tree that represents possible trajectories in a
belief space , wherein nodes of the trajectory tree represent
values of a continuous observation , a continuous state , and
a continuous control , each node being associated with one of
multiple timesteps along the plurality of possible trajecto
ries , and wherein branches from inner nodes to child nodes
correspond to possible outcomes and observations of a
multi - modal latent state ; determining a current value of the
continuous control associated with a current node ; and
applying the current value of the continuous control to
operation of the physical mechanism .

Publication Classification
(51) Int . Cl .

G05D 1/02 (2006.01)
G05B 19/042 (2006.01)
B62D 6/00 (2006.01)
G05D 1/00 (2006.01)

System 100

Autonomous Vehicle
102

Autonomous Agent
104

Trajectory Planner

Trajectory Tree

Data Kepository
Sensor

Physical
Mechanism

120 Observation Data
124

State Data

Control Data

Patent Application Publication Feb. 18 , 2021 Sheet 1 of 11 US 2021/0048823 A1

System 100

Autonomous Vehicle
102

Autonomous Agent
104

Trajectory Planner
108

Trajectory Tree
110

Data Repository
112 Sensor

106

Physical
Mechanism

Observation Data

State Data

Control Data

FIG . 1

Patent Application Publication Feb. 18 , 2021 Sheet 2 of 11 US 2021/0048823 A1

Obtain a current observation

Generate a root node based on the current observation
204

Initialize a value of the continuous control for the root node
206

ONOCE HORRO DANDO DO 100D

I
1
I
1
I
1

Determine maximum
likelihood outcomes and
observations for modes of
the inulti - mode latent

state
208

Sample possible outcomes
from a belief distribution

210

Generate child nodes
212

Initialize values of the continuous control for the child nodes
213

for each child node

Finite
horizon reached ?

Yes

FIG . 2A

Patent Application Publication Feb. 18 , 2021 Sheet 3 of 11 US 2021/0048823 A1 9

Apply derivative function to leaf nodes
216

Starting at the leaf nodes , propagate results of the derivative
function through parent nodes

218

Starting at the root node , apply optimization function to
values of the continuous control

No Optimization
termination condition

satisfied ?
222

Yes
COLOUUUUUUUUUUUUU

Determine a current value of the continuous control
224

Apply the current value of the continuous control to
operation of a physical mechanism

226

2A

FIG . 2B

Patent Application Publication Feb. 18 , 2021 Sheet 4 of 11 US 2021/0048823 A1 9

Generate a trajectory tree
302

Obtain a current observation
304

MOOOOOOOO

Determine a closest - fit node in the trajectory tree for the
current observation

306
MO

Obtain a current value of the continuous control from the
closest - fit node

308
oooooooonnnnnnnnnn

Apply the current value of the continuous control to
operation of a physical mechanism

310

Adjust the value of the control , based on a difference
between the a current observation and a projected value

found in the trajectory tree
312

FIG . 3

Patent Application Publication Feb. 18 , 2021 Sheet 5 of 11 US 2021/0048823 A1

Trajectory Tree 400

07 , 0 , 0
01.rb ??

OT - 1 , IT - 1 , br

*** : :
* * *

01.2.64
Get , ?? , ? , ??

FIG . 4

Patent Application Publication Feb. 18 , 2021 Sheet 6 of 11 US 2021/0048823 A1

Algorithm 502

3 Procedure FORWARDTRBE ILS Swak 02.1.0

3

moet net
3 het

«

FORWARDTREE (1.109 Unik Ka 21.11 :

FIG . 5A

Patent Application Publication Feb. 18 , 2021 Sheet 7 of 11 US 2021/0048823 A1

Algorithm 504

Algorittu 2. PODDPBACKWARDPASSUS . 2.23

3 BACKWARDTRÉE (RK , 5.2.1 , 1 :

FIG . 5B

Patent Application Publication

I PODOP 300001 MDDP - PWDDP

25000

by Left = 1.0

b2 (Left = 0.0

hh

X

Cumulative Execution Cost

30 25

X byLeft) = 1.0 by Left = 0.0 by (Left = 0.58 b (Left) = 0.44

30
25 X

20 15

20 15

20000 15000

**

10000

5 . 0 .
5

er der som er

???

bo (Left) = 0.51

-20.10 0 10 20

bolLeft = 0.51

-20 -10 0 10 20

0

2 4 6 8 10 12 Observation Uncertainty Level

Feb. 18 , 2021 Sheet 8 of 11

602

604

006

FIG . 6A

US 2021/0048823 A1

00

62 = 0.68

60

Patent Application Publication

02 = 1.0

50

20'0 = 27

50

40

00:20

40

30

30

960 = hq

20

by = 0.04

10

10

bo / Smooth) = 0.49

0

0

bo / Smooth

) = 0.49 2 4

Feb. 18 , 2021 Sheet 9 of 11

7

0

t
?

7

0

2

4

809

019

FIG . 6B

US 2021/0048823 A1

Patent Application Publication Feb. 18 , 2021 Sheet 10 of 11 US 20210048823 A1

?? ? ? ? ?
bg / Nice)

88 *** SR * - ***

20088 ? ? $ 88 , 610
Ba (Nice
)

00 =

b , (Nice) 0 -

?? ? ? ? ?

by / Nice = 10 FIG . 6C 28US $ 80A BRRORS **

?? ? ? ? ?

?? ? ? ? ? ?
Ba (Nice
)

= 1.0 614
?? ? ? ? ? ? ? ? ? ?

by (Nice) 860

8

012 by / Nice) ? ? -
301

?

Patent Application Publication Feb. 18 , 2021 Sheet 11 of 11 US 2021/0048823 A1

Cursor Control Display
712

Input Device
714

Main Memory ROM Storage Device
710 708

Bus
702

Processor Communication
Interface
718

700

Network Link
720

Internet

Server
730

Local
Network
722

Host
724

726

FIG . 7

US 2021/0048823 Al Feb. 18 , 2021
1

LATENT BELIEF SPACE PLANNING USING
A TRAJECTORY TREE

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi
sional Patent Application Ser . No. 62 / 887,996 , titled
“ PODDP : Partially Observable Differential Dynamic Pro
gramming For Latent Belief Space Planning , ” filed Aug. 16 ,
2019 , which is hereby incorporated by reference .

BACKGROUND

[0002] An autonomous agent is a set of hardware and / or
software configured to control a physical mechanism . For
example , a vehicle (e.g. , automobile , aircraft , or water
vehicle) may include an autonomous agent that controls
steering , braking , acceleration , and / or some other physical
mechanism of the vehicle , allowing the vehicle to be wholly
or partially self - driving . Many different kinds of autono
mous agents exist . An autonomous agent receives informa
tion about the physical environment from one or more
sensors and uses the information to help determine how to
control the physical mechanism . For example , if data from
a sensor indicates an obstruction in the path of a self - driving
vehicle , an autonomous agent may instruct the vehicle to
brake and / or turn .
[0003] In many cases , autonomous agents are required to
operate in situations where the state of the environment is
uncertain . The ability to handle such situations is generally
considered a critical goal of autonomous agents , particularly
in situations involving potentially high stakes (e.g. , loss of
life and / or valuable cargo) . For example , noisy actuators ,
imperfect sensors , and perceptual limitations such as occlu
sion can contribute to the uncertainty that autonomous
agents face . Even if perfect sensors and perception were
possible , some latent states of the environment would
remain opaque , such as whether a cookie jar is empty or
whether another driver intends to yield . To plan under such
uncertainty , autonomous agents typically seek to balance the
cost of exploratory actions with the potential benefit of
gaining additional information about the environment . How
ever , the problem of planning under partial observability ,
which can be formalized as a partially observable Markov
decision process (POMDP) is generally intractable .
[0004] Approaches described in this section have not
necessarily been conceived and / or pursued prior to the filing
of this application . Accordingly , unless otherwise indicated ,
approaches described in this section should not be construed
as prior art .

generating a trajectory tree that represents possible trajec
tories in a belief space , wherein nodes of the trajectory tree
represent values of a continuous observation , a continuous
state , and a continuous control , each node being associated
with one of multiple timesteps along the possible trajecto
ries , and wherein branches from inner nodes to child nodes
correspond to possible outcomes and observations of a
multi - modal latent state ; determining a current value of the
continuous control associated with a current node ; and
applying the current value of the continuous control to
operation of the physical mechanism .
[0007] Generating the trajectory tree may include : (a) in a
first forward pass , initializing the values of the continuous
control for the nodes ; (b) in a backward pass , starting at leaf
nodes , propagating results of a derivative function through
parent nodes ; and (c) in a second forward pass , applying an
optimization function to values of the continuous control ,
based at least on the results of the derivative function .
Operations (b) and (c) may be repeated iteratively until an
optimization termination criterion is satisfied .
[0008] The first forward pass may include generating the
nodes at least by : (i) generating a root node of the trajectory
tree , based at least on the current observation ; (ii) determin
ing maximum likelihood outcomes for modes of the multi
modal latent state associated with the current observation ;
(iii) determining maximum likelihood observations associ
ated with the maximum likelihood outcomes ; (iv) generating
child nodes of the root node , corresponding to the maximum
likelihood outcomes and maximum likelihood observations ;
and (v) performing (ii) , (iii) , and (iv) recursively , starting at
the child nodes of the root node , until a finite horizon is
reached .
[0009] The first forward pass may include generating the
nodes at least by : (i) generating a root node of the trajectory
tree , based at least on the current observation ; (ii) sampling
possible outcomes from a belief distribution associated with
the current observation ; (iii) sampling possible observations
associated with the possible outcomes ; (iv) generating child
nodes of the root node , corresponding to the possible out
comes and possible observations ; and (v) performing (ii) ,
(iii) , and (iv) recursively , starting at the child nodes of the
root node , until a finite horizon is reached .
[0010] Generating the trajectory tree may include updat
ing values in a preexisting data structure that represents the
trajectory tree .
[0011] Timesteps associated with the nodes may be sepa
rated by time intervals that are greater than a sampling rate
used by one or more autonomous agent sensors providing
values of the continuous observation .
[0012] The continuous state may be a partially - observable
continuous state .
[0013] The multi - modal latent state may be bimodal or
have more than two modes ,
[0014] The physical mechanism may be a steering mecha
nism of a vehicle .
[0015] In general , in one aspect , one or more non - transi
tory computer - readable media store instructions that , when
executed by one or more processors , cause the one or more
processors to perform operations . The operations include :
during execution of an autonomous agent configured to
control operation of a physical mechanism , generating a
trajectory tree that represents possible trajectories in a belief
space , wherein nodes of the trajectory tree represent values
of a continuous observation , a continuous state , and a

TECHNICAL FIELD

[0005] The present disclosure relates generally to autono
mous agents used to control the operation of physical
mechanisms .

SUMMARY

[0006] In general , in one aspect , one or more non - transi
tory computer - readable media store instructions that , when
executed by one or more processors , cause the one or more
processors to perform operations . The operations include :
during execution of an autonomous agent configured to
control operation of a physical mechanism , obtaining a
current observation of a physical environment ; based at least
on the current observation of the physical environment ,

US 2021/0048823 A1 Feb. 18 , 2021
2

understanding of the various aspects and embodiments , and
are incorporated in and constitute a part of this specification ,
but are not intended to define the limits of the disclosure . In
the Figures , each identical or nearly identical component
that is illustrated in various Figures is represented by a like
numeral . For the purposes of clarity , some components may
not be labeled in every figure . In the Figures :
[0026] FIG . 1 is a block diagram of an example of a
system according to an embodiment ;
[0027] FIGS . 2A - 2B are a flow diagram of an example of
operations for latent belief space planning using a trajectory
tree according to an embodiment ;
[0028] FIG . 3 is a flow diagram of another example of
operations for latent belief space planning using a trajectory
tree according to an embodiment ;
[0029] FIG . 4 illustrates an example of a trajectory tree
according to an embodiment ;
[0030] FIG . 5A illustrates an example of an algorithm for
a forward pass according to an embodiment ;
[0031] FIG . 5B illustrates an example of an algorithm for
a backward pass according to an embodiment ;
[0032] FIGS . 6A - 6C illustrate examples of latent belief
space planning scenarios according to an embodiment ; and
[0033] FIG . 7 is a block diagram of an example of a
computer system according to an embodiment .

DETAILED DESCRIPTION

I. Introduction

continuous control , each node being associated with one of
multiple timesteps along the possible trajectories , and
wherein branches from inner nodes to child nodes corre
spond to possible outcomes and observations of a multi
modal latent state ; determining that a current observation
corresponds most closely to a closest - fit node ; obtaining a
current value of the continuous control associated with the
closest - fit node ; and applying the current value of the
continuous control to operation of the physical mechanism .
[0016] Generating the trajectory tree may include : (a) in a
first forward pass , initializing the values of the continuous
control for the nodes ; (b) in a backward pass , starting at leaf
nodes , propagating results of a derivative function through
parent nodes ; and (c) in a second forward pass , applying an
optimization function to values of the continuous control ,
based at least on the results of the derivative function .
Operations (b) and (c) may be repeated iteratively until an
optimization termination criterion is satisfied .
[0017] The first forward pass may include generating the
nodes at least by : (i) generating a root node of the trajectory
tree , based at least on an initial observation ; (ii) determining
maximum likelihood outcomes for modes of the multi
modal latent state associated with the initial observation ;
(iii) determining maximum likelihood observations associ
ated with the maximum likelihood outcomes ; (iv) generating
child nodes of the root node , corresponding to the maximum
likelihood outcomes and maximum likelihood observations ;
and (v) performing (ii) , (iii) , and (iv) recursively , starting at
the child nodes of the root node , until a finite horizon is
reached .
[0018] The first forward pass may include generating the
nodes at least by : (i) generating a root node of the trajectory
tree , based at least on an initial observation ; (ii) sampling
possible outcomes from a belief distribution associated with
the initial observation ; (iii) sampling possible observations
associated with the possible outcomes ; (iv) generating child
nodes of the root node , corresponding to the possible out
comes and the possible observations ; and (v) performing
(ii) , (iii) , and (iv) recursively , starting at the child nodes of
the root node , until a finite horizon is reached .
[0019] The operations may further include : adjusting the
current value of the continuous control based at least on a
difference between the current observation and a possible
value of the continuous observation associated with the
particular node .
[0020] Timesteps associated with the nodes may be sepa
rated by time intervals that are greater than a sampling rate
used by one or more autonomous agent sensors providing
values of the continuous observation .
[0021] The continuous state may be a partially - observable
continuous state .
[0022] The multi - modal latent state may be bimodal or
have more than two modes .
[0023] The physical mechanism may be a steering mecha
nism of a vehicle .
[0024] One or more embodiments described in this Speci
fication and / or recited in the claims may not be included in
this General Overview section .

[0034] As noted above , the problem of planning under
partial observability is generally intractable . Some trajectory
optimization systems have been used in nonlinear model
predictive control architectures . However , those approaches
typically require the state to be fully observable or sepa
rately estimated . Extensions of trajectory optimization tech
niques to belief space planning allow partial observability to
be captured within continuous motion planning algorithms
suitable for robotics applications . However , those
approaches primarily consider unimodal Gaussian uncer
tainty (i.e. , where a belief can be modeled as a Gaussian
distribution having a single mode) . Approaches that rely on
Gaussian distributions have limited applicability to prob
lems with multi - modal structure .
[0035] In practice , much of the uncertainty in the real (i.e. ,
non - simulated) world is multi - modal in structure , such as :
the presence or location of an object (e.g. , a goal object or
obstruction) ; the discrete mode of a system ; the expected
behavior of another person or agent (e.g. , whether another
vehicle will act aggressively or courteously) ; and many
other kinds of problems faced by autonomous agents in the
real world . Multi - modal structures can be represented within
general POMDPs . However , optimizing continuous actions
(e.g. , for motion planning) is challenging even for state - of
the - art POMDP solvers .
[0036] One or more embodiments described herein
include a trajectory optimization approach for solving non
linear POMDPs involving continuous states , actions , and
observations , with non - Gaussian beliefs over discrete latent
variables . In some examples , this approach may be referred
to as partially observable differential dynamic programming
(PODDP) . PODDP builds and optimizes a contingency plan
over a tree of possible observations and trajectories in the
belief space . Dynamic programming over the trajectory tree
may include propagating an approximate value function

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] Various aspects of at least one embodiment are
discussed below with reference to the accompanying Fig
ures , which are not intended to be drawn to scale . The
Figures are included to provide illustration and a further

US 2021/0048823 A1 Feb. 18 , 2021
3

through the belief state dynamics defined by observations
and Bayesian belief updating . In addition , some examples
include a hierarchical dynamic programming decomposition
of the problem . This approach may be practical in various
settings , including but not limited to robotics settings where
receding horizon planning is applicable and where the
control frequency may be higher than the observation fre
quency .
[0037] In general , approaches described herein allow for
modeling and optimizing trajectories in many different sce
narios , including several important classes of nonlinear ,
continuous planning problems with uncertainty over discrete
latent states . (In this discussion , for ease of explanation in
different contexts , a latent state may also be referred to as a
hidden state , partially observable state , or discrete state .)
Those classes of problems include : (1) tasks where the cost
function depends on an uncertain latent state , e.g. , where an
agent must approach or avoid goals or obstacles that may be
in a finite number of locations ; (2) tasks where the dynamics
are conditioned on the uncertain latent mode of the (hybrid)
system , e.g. , contact mode , component status , or environ
mental condition (e.g. , smooth versus rough terrain) ; and (3)
interactive tasks where other entities ' trajectories impose
dynamic costs and are influenced by their latent intentions .
In this third class of problems , for example , autonomous
driving systems must plan under uncertainty about other
vehicles interactive trajectories , conditioned on the other
drivers ' situational awareness level , intention to cooperate ,
etc.

II . System Architecture
[0038] FIG . 1 is a block diagram of an example of a
system 100 according to an embodiment . In an embodiment ,
the system 100 may include more or fewer components than
the components illustrated in FIG . 1. The components
illustrated in FIG . 1 may be local to or remote from each
other . The components illustrated in FIG . 1 may be imple
mented in software and / or hardware . Each component may
be distributed over multiple applications and / or machines .
Multiple components may be combined into one application
and / or machine . Operations described with respect to one
component may instead be performed by another compo
nent .

[0039] As illustrated in FIG . 1 , the system 100 includes an
autonomous vehicle 102. The autonomous vehicle 102 may
be a wholly autonomous vehicle configured to operate
without any human guidance . Alternatively , the autonomous
vehicle 102 may be a partially autonomous vehicle in which
some aspects are automated and others remain under control
of a human operator . Some examples of autonomous
vehicles include , but are not limited to : a self - driving
automobile designed to transport cargo and / or passengers
(e.g. , a self - driving tractor - trailer used to transport cargo
over roads and / or within a cargo distribution facility) ; an
aircraft (e.g. , a cargo or passenger aircraft , a drone , or
another kind of aircraft) ; a watercraft ; a spacecraft ; and an
automated home appliance (e.g. , a robotic vacuum cleaner) .
As used herein , the term “ vehicle ” should not be considered
limited to craft used to transport cargo and / or passengers .
The autonomous vehicle 102 includes one or more physical
mechanism (s) 120 used to direct the autonomous vehicle
102's trajectory (including direction , acceleration , and / or
speed) , such as a steering mechanism , accelerator , brake ,
etc. A physical mechanism 120 may include a controller (not

shown) that translates digital and / or analog instructions to
physical motion (e.g. , physically turning the wheels , increas
ing or decreasing acceleration , engaging a brake mechanism ,
etc.) .
[0040] To help direct the autonomous vehicle 102's tra
jectory , the autonomous vehicle 102 includes one or more
autonomous agent (s) 104 configured to control the operation
of one or more of the physical mechanism (s) 120. For ease
of discussion , the following description assumes a single
autonomous agent 104 ; however , embodiments may be
practiced with any number of autonomous agents 104. The
autonomous agent 104 is configured to receive information
about the physical environment from one or more sensors
106. For example , the sensor (s) 106 may include a radar
sensor , lidar sensor , camera (i.e. , configured to capture still
images and / or video) , microphone , thermometer , altitude
sensor , global positioning system (GPS) , and / or another
kind of sensor configured to gather information about the
physical environment . Information gathered by a sensor 106
may relate to the geospatial location of the autonomous
vehicle 102 , weather conditions , locations of static and / or
mobile obstacles (e.g. , other vehicles , pedestrians , terrain ,
overpasses , etc.) , road markings , altitude , and / or other infor
mation relevant to the autonomous vehicle 102's location
and trajectory in the physical environment .
[0041] The autonomous agent 104 includes a trajectory
planner 108. Based at least in part on information from the
sensor (s) 106 , the trajectory planner 108 is configured to
generate a trajectory tree 110 and use the trajectory tree 110
to plan a trajectory for the autonomous vehicle 102 .
Examples of operations for generating and using a trajectory
tree 110 are described in further detail below . Based at least
on the trajectory tree 110 , the autonomous agent 104 is
configured to control operation of the physical mechanism
(s) 120. For example , the autonomous agent 104 may send
a signal to a steering mechanism to adjust the autonomous
vehicle 102's direction , to an accelerator to increase or
decrease acceleration , and / or to a braking mechanism to
apply the brakes . The autonomous agent 104 may be con
figured to control operation of many different kinds of
physical mechanisms 120 in many different ways .
[0042] The trajectory tree 110 may be conceptualized as
starting from a root node and branching “ upward . ” The
upward direction is also referred to herein as “ forward . ”
Connections between nodes of the trajectory tree 110 are
referred to as “ edges . ” A node that connects to one or more
higher nodes is an “ inner ” node and may be referred to as a
“ parent ” or “ grandparent ” (depending on the number of
levels of separation) of the higher node (s) . The root node is
thus the innermost node . The higher node (s) is / are , in turn ,
the parent node's “ child ” node (s) . A node that does not have
any children is referred to as a “ leaf " node . An “ upward ” or
“ forward ” traversal (also referred to as a “ pass ”) of the
trajectory tree 104 begins at an inner node (e.g. , the root
node) and advances along edges toward the leaf node (s) . A
" downward ” or “ backward ” traversal of the trajectory tree
104 begins at one or more leaf nodes and advances toward
the root node . A traversal may be performed in many
different ways , including but not limited to depth - first (i.e. ,
traversing the full depth of one branch before proceeding to
the next branch) or breadth - first (i.e. , traversing all the nodes
at a given level before proceeding to the next level) . The
trajectory tree 104 may be stored using many different kinds
of data structures , including but not limited to object

US 2021/0048823 A1 Feb. 18 , 2021
4

network policy server , a proxy server , a generic machine , a
function - specific hardware device , a hardware router , a
hardware switch , a hardware firewall , a hardware network
address translator (NAT) , a hardware load balancer , a main
frame , a television , a content receiver , a set - top box , a
printer , a mobile handset , a smartphone , a personal digital
assistant (“ PDA ”) , a wireless receiver and / or transmitter , a
base station , a communication management device , a router ,
a switch , a controller , an access point , and / or a client device .

III . Operations for Latent Belief Space Planning
Using a Trajectory Tree

oriented structures (e.g. , with each node represented as an
instance of a node object and referencing zero or more other
node objects as child nodes) or an array . While examples
described herein assume a strict tree data structure , some
embodiments may include multiple root nodes and / or con
nections between nodes that form cycles , thus resulting in a
data structure that cannot strictly be referred to as a tree .
Embodiments should not be considered limited to the spe
cific structure described in the included examples .
[0043] In an embodiment , each level of the trajectory tree
104 corresponds to a set of one or more states in belief space
at a particular timestep . For example , if the system 100 uses
a control frequency of 50 Hz , each level of the trajectory tree
104 may correspond to increments of 1 / soth of a second . In
this example , the projected observation (s) and control (s) for
a particular node correspond to a time 1 / soth of a second
earlier than the time associated with its immediate child
(ren) . In some examples , the system 100 may use a control
frequency of 1 Hz , 10 Hz , and / or another frequency . The
system 100 may use different control frequencies for differ
ent physical mechanisms and / or may change a control
frequency over time . The magnitudes of timesteps may be
consistent across all levels of the trajectory tree 104 or may
change as the distance from the root node increases . The
timesteps of the trajectory tree 104 may align with an
observation frequency (e.g. , the frequency of data collection
by one or more sensors) , or may correspond to a different
frequency . In some examples , the trajectory tree 104 repre
sents timesteps that are longer than the time between obser
vations , e.g. , as a multiple of the time between observations
or an unrelated magnitude .
[0044] The autonomous agent 104 may be configured to
store data associated with trajectory planning (e.g. , obser
vation data 114 , state data 116 , and / or control data 118) in a
data repository 112. A data repository 112 is any type of
storage unit and / or device (e.g. , a file system , database ,
collection of tables , or any other storage mechanism) for
storing data . A data repository 112 may include multiple
different storage units and / or devices . The multiple different

units and / or devices may or may not be of the same
type or located at the same physical site . Further , a data
repository 112 may be implemented or may execute on the
same computing system as one or more other components of
the system 100. Alternatively or additionally , a data reposi
tory 112 may be implemented or executed on a computing
system separate from one or more other components of the
system 100. A data repository 112 may be logically inte
grated with one or more other components of the system
100. Alternatively or additionally , a data repository 112 may
be communicatively coupled to one or more other compo
nents of the system 100 via a direct connection or via a
network . In FIG . 1 , a data repository 112 is illustrated as
storing various kinds of information . Some or all of this
information may be implemented and / or distributed across
any of the components of the system 100. However , this
information is illustrated within the data repository 112 for
purposes of clarity and explanation .
[0045] One or more components of the system 100 may be
implemented on one or more digital devices . The term
" digital device ” generally refers to any hardware device that
includes a processor . A digital device may refer to a physical
device executing an application or a virtual machine .
Examples of digital devices include a computer , a tablet , a
laptop , a desktop , a netbook , a server , a web server , a

[0046] Gaussian belief space planning assumes that all
uncertainty can be represented in the form of unimodal
Gaussian distributions over the state space . For example , a
robot's position along an axis , in the presence of observa
tional noise , may be modeled using a unimodal Gaussian
distribution (a.k.a. “ normal distribution ”) . As another
example , the mass of a cargo container , in the absence of an
ability to weigh the container precisely at a given moment ,
may be modeled using a unimodal Gaussian distribution . In
contrast , techniques described herein capture the multi
modality of real - world uncertainty . Specifically , one or more
embodiments represent multi - modal uncertainty using a
trajectory tree , and apply differential dynamic programming
(DDP) to optimize trajectory planning over the tree . As used
herein , the terms " optimal , ” “ optimize , " " optimization , ” etc.
do not refer to a theoretically optimal result , but rather to a
best - effort attempt at optimization under real - world con
straints (e.g. , time , available computing power and / or
memory , etc.) .
[0047] In general , DDP techniques optimize a trajectory
by alternating forward and backward passes . The forward
pass rolls out the dynamics and costs using a control
sequence . The backward pass takes a local second - order
approximation to the value function and updates the control
sequence to optimize the approximate value function . The
forward and backward passes are repeated until a locally
optimal trajectory is found .
[0048] PODDP plans in belief space , but unlike Gaussian
belief space planning , the marginal distribution over obser
vations is not unimodal and the belief - space trajectory
cannot be approximated by propagating a single sequence of
means and variances . In examples described herein (includ
ing , but not limited to , example scenarios of a “ T - Maze " for
planning under cost uncertainty , varying terrain roughness
for planning under dynamic mode uncertainty , and lane
changing for planning in a belief space that includes other
agents ' latent intensions) , a discrete latent variable induces
a multi - modal distribution over observations . In addition , a
non - Gaussian belief state induces a theoretically infinitely
branching tree of observations , beliefs , and controls . An
initial PODDP forward pass constructs a trajectory tree from
root to leaves , using one or more current observations (e.g. ,
data from one or more sensors) as a basis for predicting
possible outcomes over a finite time horizon . As used herein ,
" outcomes ” refer to possible state transitions and “ observa
tions ” refer to theoretical values of data received from
sensors (i.e. , theoretical observations that would be consis
tent with those state transitions) . The trajectory tree repre
sents a finite subset of the theoretically infinite branching
tree of observations , beliefs , and controls , thus providing a
finite structural approximation of a trajectory planning prob

US 2021/0048823 A1 Feb. 18 , 2021
5

lem having theoretically infinite possible outcomes . An
example of a trajectory tree is described in further detail
below .
[0049] The PODDP backward pass proceeds from the
leaves of the tree and propagates the value through obser
vations and belief updates via dynamic programming . A
subsequent forward pass applies an optimization function to
values of the continuous control at each node , based on the
information propagated in the backward pass . As described
below , multiple forward and backward passes may be used
to iteratively optimize the trajectory tree . After optimization ,
the trajectory tree includes an optimized value of a control
to apply to a physical mechanism for a control cycle . The
following discussion of FIGS . 2A - 2B and FIG . 3 provide a
general overview of this process according to some embodi
ments . A detailed example is provided below with reference
to FIGS . 4 and 5A - 5B .
[0050] FIGS . 2A - 2B are a flow diagram of an example of
operations for latent belief space planning using a trajectory
tree according to an embodiment . One or more operations
illustrated in FIGS . 2A - 2B may be modified , rearranged , or
omitted all together . Accordingly , the particular sequence of
operations illustrated in FIGS . 2A - 2B should not be con
strued as limiting the scope of one or more embodiments .
[0051] Generating and optimizing a trajectory tree
requires at least some information about the observable
physical environment . An autonomous agent obtains a cur
rent observation (Operation 202) , for example , from one or
more sensors as illustrated in FIG . 1. The autonomous agent
generates a root node based on the current observation
(Operation 204) and initializes a value of the continuous
control for the root node (Operation 206) . The autonomous
agent may initialize the continuous control as a default value
(e.g. , zero or some other default value , such as a default
value based on prior experimentation) . An initial forward
pass of the trajectory tree may proceed from the root node
to construct the trajectory tree , without yet making any
attempt at optimizing the values of the continuous control at
each node .
[0052] Generating child nodes is based on an understand
ing of the latent state as being multi - modal in structure . This
understanding may be handled in various ways . In one
approach , the autonomous agent determines maximum - like
lihood outcomes and observations for modes of the multi
modal latent state (Operation 208) . These maximum - likeli
hood outcomes and observations correspond to predicted
peaks of the multi - modal latent state . An example of a
maximum - likelihood outcomes (MLO) heuristic is
described in further detail below , in which the maximum
likelihood outcomes and observations are computed as the
means of the distributions . In another approach , the autono
mous agent samples possible outcomes from a belief distri
bution (Operation 210) , which may not correspond to pre
dicted peaks of the multi - modal latent state . Whatever
approach is used , the autonomous agent generates at least
two child nodes of the root node (Operation 212) , corre
sponding to respective outcomes and observations , and
initializes values of the continuous control for each of the
child nodes (Operation 213) .
(0053] In an embodiment , generating the tree is a recursive
process that continues to add levels to the trajectory tree
until a predetermined finite horizon is reached . Specifically ,
the finite horizon may correspond to a predetermined num
ber of timesteps (i.e. , a predetermined number of levels of

the trajectory tree) , such that planning is based on projec
tions up to a certain amount of time in the future . At each
level of the initial forward pass , the autonomous agent
determines whether the finite horizon has been reached
(Decision 214) . If the finite horizon has been reached , then
the most recently - generated child nodes are left as leaf
nodes . If the finite horizon has not been reached , then the
process is repeated for each child node .
[0054] At the end of the first forward pass , the autonomous
agent has generated a trajectory tree out to a finite horizon ,
with initial values of the continuous control for each node .
Having thus constructed the trajectory tree , the autonomous
agent may proceed to optimize the trajectory tree for a value
of the continuous control at the root node . The optimization
process may include at least one backward pass and one
additional forward pass . In a backward pass , the autonomous
agent applies a derivative function to the leaf nodes (Opera
tion 216) . Then , starting at the leaf nodes , the autonomous
agent propagates results of the derivative function through
the parent nodes , toward the root node (Operation 218) . A
subsequent forward pass starts again at the root node and
utilizes the values of the derivative function propagated
from the leaf nodes . Specifically , starting at the root node
and proceeding toward the leaf nodes , the autonomous agent
applies an optimization function to values of the continuous
control (Operation 220) .
[0055] The autonomous agent may iteratively perform one
or more additional forward and / or backward passes of the
trajectory tree , until one or more optimization termination
conditions is / are satisfied (Decision 222) . The autonomous
agent may use many different criteria to determine when to
stop optimizing the trajectory tree . For example , the autono
mous agent may have a limited amount of time in which to
generate the trajectory tree (e.g. , an amount of time that
allows the autonomous agent to satisfy a target control
frequency) . An optimization termination condition may be
satisfied when that amount of time is reached , or is expected
to be reached before completing another forward and / or
backward pass . The autonomous agent may check how
much time remains at the end of a forward or backward pass ,
and / or at intervals throughout each forward or backward
pass (e.g. , at each level of traversal and / or at each node) .
Alternatively or additionally , the autonomous agent may
compare the value of the continuous control (i.e. , at the root
node and / or one or more other nodes) from one iteration to
the next . An optimization termination condition may be
satisfied when the current value of the continuous control
differs from a prior value (for example , from the value at the
root node in a previous pass of the trajectory tree) by no
more than a predetermined threshold difference (e.g. , as a
percentage or absolute value) , implying that additional itera
tions will provide such marginal improvement that they are
not required .
[0056] When the autonomous agent has finished optimiz
ing the trajectory tree , the autonomous agent determines a
current value of the continuous control (Operation 224) .
Specifically , the value of the continuous control at the root
node represents the optimized value based on the most
current observation and optimizations , as described above .
This value thus represents the optimal value to apply in the
current control cycle . Accordingly , the autonomous agent
applies the current value of the continuous control to opera
tion of the physical mechanism being controlled by the
autonomous agent (Operation 226) .

US 2021/0048823 A1 Feb. 18 , 2021
6

Uadj

[0057] The autonomous agent may repeat the process
described above on an ongoing basis , during operation of the
autonomous vehicle . Specifically , the autonomous agent
may continue to obtain new observations (e.g. , according to
a control frequency and / or observation frequency) , and
generate trajectory trees , to determine the optimal control to
apply on an ongoing basis . Upon obtaining a new observa
tion , the autonomous agent may generate a new trajectory
tree from scratch (i.e. , initialize a new trajectory tree data
structure with default control values and then optimize the
new trajectory tree) or reuse an existing trajectory tree data
structure . When reusing an existing data structure , the
autonomous agent may re - initialize controls to default val
ues at each node . Alternatively , the autonomous agent may
use values already present in the trajectory tree as initial
control values . The autonomous agent may copy the existing
values to a new data structure or reuse the same data
structure . In addition , given that the new trajectory tree starts
at least one timestep forward in time , the autonomous agent
may discard the unused branch (es) (i.e. , any projected
trajectories that are no longer relevant) and extend the depth
of the remaining subtree by adding one or more layers of
child nodes , to account for the passage of time and keep the
finite horizon constant . Reusing existing values and / or the
data structure may help reduce the amount of processing
needed to optimize the trajectory tree for the next control
cycle .

[0058] In the example of FIGS . 2A - 2B , for each control
cycle , the autonomous agent uses the trajectory tree to
optimize for a value of the continuous control based on a
current observation . In another approach , the autonomous
agent still initializes and optimizes the trajectory tree (i.e. ,
over a series of forward and backward passes , until an
optimization termination criterion is satisfied) . However , in
this approach , the autonomous agent does not re - optimize
the trajectory tree for each control cycle . Instead , for a given
control cycle , the autonomous agent determines which node
of the previously - generated trajectory tree most closely
approximates real - world conditions , i.e. , the node whose
observation value most closely matches a current , real - world
observation . Between control cycles , the autonomous agent
may adjust the value of the control to be applied , based on
differences between real - world observations and the
approximations found in the tree . For example , as described
in further detail below , the autonomous agent may apply a
linear feedback gain (i.e. , increase or decrease the value (s)
of one or more dimensions of the nominal control) based on
a difference between real - world and projected observations .
FIG . 3 is a flow diagram of another example of operations
for latent belief space planning using a trajectory tree
according to an embodiment , following this alternative
approach . One or more operations illustrated in FIG . 3 may
be modified , rearranged , or omitted all together . Accord
ingly , the particular sequence of operations illustrated in
FIG . 3 should not be construed as limiting the scope of one
or more embodiments .
[0059] In this approach , an autonomous agent generates a
trajectory tree based on information about the observable
physical environment (Operation 302) , for example using
techniques described above with respect to FIGS . 2A - 2B . At
a later time (e.g. , after an amount of time corresponding to
one or more timesteps in the trajectory tree) , the autonomous
agent obtains a current observation (Operation 304) that
includes information about the observable physical environ

ment at that time . As noted above , the nodes of the trajectory
tree represent a branching set of possible controls and
observations . To determine which control to apply in the
current control cycle , the autonomous agent may determine
a closest - fit node in the trajectory tree , for the current
observation (Operation 306) . That is , the autonomous agent
may determine which node includes a value of the continu
ous observation that most closely matches (e.g. , as a per
centage or absolute difference) the current observation . The
autonomous agent may inspect the entire trajectory tree or
may inspect only the nodes at a given level , i.e. , the level
associated with the current timestep . Upon determining
which node is the closest - fit node , the autonomous agent
obtains the current value of the continuous control from the
closest - fit node (Operation 308) and applies the current
value of the continuous control to operation of the physical
mechanism being controlled by the autonomous agent (Op
eration 310) .
[0060] Because the possible value of the continuous obser
vation at the closest - fit node likely does not match the
current observation exactly , the autonomous agent may
adjust the value of the control to be applied , based on a
difference between one or more current , real - world obser
vations and the projected value (s) found in the tree (Opera
tion 312) . Formula (9) below includes a linear closed - loop
feedback gain “ K. " The adjusted value of a control may
be a function of (1) the nominal control unom) (2) Kbranch for
the branch of the trajectory tree starting from the closest - fit
node , (3) the nominal belief state , and (4) the actual belief
state . For example :

U adj = Unom + Kyranchx [/ xnombnom) - (x actuabb actuar)) (1)

Alternatively or additionally , another formula may be used
to compute and apply a feedback gain and / or other kind of
adjustment . In addition , the autonomous agent may add
child nodes to the branch of the trajectory tree that emanates
from the closest - fit node . Alternatively , the autonomous
agent may regenerate the trajectory tree periodically , based
on current observations , using techniques described above
with respect to FIGS . 2A - 2B . For example , the autonomous
agent may regenerate the trajectory tree when the finite
horizon is reached , indicating that the trajectory tree no
longer supplies a plan to execute for the next control cycle .
Alternatively , the autonomous agent may regenerate the
trajectory tree every N control cycles , where N is a prede
termined number of control cycles and may be configurable ,
thus using a hybrid approach that reduces the number of
times the trajectory tree must be regenerated .
[0061] The autonomous agent may repeat the process
described above on an ongoing basis , during operation of the
autonomous vehicle . Specifically , the autonomous agent
may continue to obtain new observations (e.g. , according to
a control frequency and / or observation frequency) , and
match the new observations to closest - fit nodes in the
trajectory tree (optionally regenerating the trajectory tree
periodically , as described above) , to determine the optimal
control to apply on an ongoing basis .

IV . Detailed Examples

[0062] Detailed examples are described below for pur
poses of clarity . Components and / or operations described
below should be understood as examples that may not be
applicable to one or more embodiments . Accordingly , com

US 2021/0048823 A1 Feb. 18 , 2021
7

V * (x , b) -E - 6 , [1 (x (x , b) z) + Ex [V " (X : + , h (0X ,
Uz - 1,4-1,6-))]] (3)

" (x , bz) = E - b7 [X72)]
where in the second expectation 0 , p (0,1x ,, z) and X : +1 ~ P (X +
1 | X , U , Z) and where the value at the planning horizon T is the
expected final cost . In this example , the optimal policy may
thus be defined as :

1 * (x , b) = arg max , 1 * (x , b) . (4)

ponents and / or operations described below should not be
construed as limiting the scope of one or more embodiments .
[0063] A. Trajectory Tree Optimization
[0064] 1. Problem Formulation
[0065] The following examples consider finite - horizon
trajectory planning and control problems , in environments
with hybrid continuous and discrete state , and continuous
actions and observations . The state space (referring gener
ally to a combination of hidden and continuous states) may
be represented as S = XxZ and factorized into a continuous
state space X and a discrete space state Z. The discrete state
represents the latent mode of the hybrid system . The control
space U and observation space o are continuous . For
simplicity , the continuous state may be assumed to be fully
observable , while the discrete state is partially observable ;
this formulation is thus a mixed - observability Markov deci
sion process (MDP) model that yields more compact repre
sentations of the belief space and dynamics . However , the
model may be extended to allow partially observable con
tinuous state , for example by assuming the continuous state
to be Gaussian distributed and planning in the Gaussian
belief state . In addition , for simplicity , the value of the
hidden state may be assumed to be constant over the
planning horizon . This assumption is sensible when dealing
with problems with relatively short planning horizons (e.g. ,
model - predictive control) over which the hidden state can be
assumed to be constant . However , other embodiments may
extend stochastic dynamics over the hidden state , for
example by incorporating Bayesian filtering to update the
belief over the hidden state . In these examples , system
dynamics are defined by the conditional distribution over the
next state X4 + 1.P (Xz + 1 \ x , u ,, Z) , which depends on the current
state (x ,, z) ES , and control u , EU . The observation distribu
tion po , lx , Z) is also conditioned on the current state . The
current belief about the hidden state depends on the history
of observed states , controls , and observations . Recursive
Bayesian filtering may be used to update the current belief ,
based on the latest observation , which includes both 0 , and
X , following the mixed - observability assumption :

An example of a PODDP approach to computing V and T *
is described below .
[0067] 2. PODDP Forward Pass
[0068] Partially observable differential dynamic program
ming (PODDP) is discussed generally above . In this
example , given an initial belief state (x , bo) , the initial
PODDP forward pass constructs a trajectory tree that
approximates the infinite space of possible control , state ,
observation , and belief sequences up to a finite horizon T.
Each node in the tree may be labeled with the control to be
executed if that node is (theoretically) reached . Given the
control and belief state at a given node , a finite set of
branches from that node may be generated , corresponding to
possible state transitions , observations , and belief updates . A
control node is created following each branch , and tree
expansion proceeds recursively until the finite horizon is
reached
[0069] FIG . 4 illustrates an example of a trajectory tree
400 according to an embodiment , and FIG . 5A illustrates an
example of an algorithm 502 for a forward pass according to
an embodiment . As illustrated in FIG . 4 , starting from belief
state (xo , bo) , tree construction rolls out control u , for each
possible latent state value z E Z , assuming next state x? ? and
observation o , take their maximum likelihood value , and
b ? is given by Bayesian belief updating . Tree construction
proceeds recursively from each x? ?, b , ? , until the finite
horizon is reached . In the example illustrated in FIG . 4 ,
superscript labels for 07-1 , X7-1 , bt - 1 have been suppressed
for clarity . A complete notation would record the complete
history of latent state values used to generate the state and
observation sequence preceding the node .
[0070] To approximate the infinite set of continuous obser
vations that are possible from each node , a maximum
likelihood outcomes (MLO) heuristic may be used . For each
possible latent state value z E Z , the maximum - likelihood
state transition and observation are computed , and a belief
update is performed as illustrated in lines 12-14 of the
algorithm 502. The MLO heuristic transforms the operation
of sampling next states and observations into a deterministic
function , which PODDP requires to be differentiable .
Accordingly , p (x_lx , -1,4 , -1,2) and p (0 , lx ,, z) may be assumed
to be Gaussian distributions with additive noise . In this
approach , MLO corresponds to taking the mean of the
distributions , and differentiation includes taking the deriva
tive of the underlying process .
[0071] In this example , the forward pass is called on every
iteration of PODDP . On the first iteration , the nominal
controls Unom are initialized to a default value (constant in
the examples herein , although more complex schemes are
possible) , and nominal belief states Snom and the control
updates k and K are set to null . At later iterations , k and K ,
computed by the backward pass , specify modifications to the
previous control Unom and provide linear feedback control

bi + 1 (z) = P (z | 07 , X? , Ut - 1 , ... , 01 , X1 , uo , Xo , bo) (2)

= P (z | 07 , X7 , Ut - 1 , X : -1 , b)

= n . p (0+ Xt , z) p (x + | X : -1 , U4-1 , 7) b : (z)
= h (07 , X7 , Ut - 1 , X : -1 , b) ,

where n is a normalizing constant , and where h () is defined
to denote the deterministic belief update function mapping by
to bet1
[0066] The running loss function 1 (x , u , z) represents the
loss incurred by the control u , from the current state , and the
final loss function 1 , { X79Z) represents the loss incurred within
a state at the end of the planning horizon ; both functions may
be assumed to be twice - differentiable . To reduce costs ,
controls may be conditioned on the current belief state ,
defined as the pair (x ,, b) because the current POMDP state
(x , z) is not fully observable . The expected finite - horizon
cost of a policy n may be defined mapping belief states to
controls recursively :

US 2021/0048823 A1 Feb. 18 , 2021
8

Q (ds , du) = (6)

biz ; B + 83) [(x + 8x , u + du , z) + V (x + 8x , h (o ' , x ' , u + du ,
ZEZ

x + 8x , blß + 8B)] = { ballz + V (5 :))
ZEZ

gains to stabilize the trajectory around Smom , respectively .
The step size a is set by a line search procedure .
[0072] 3. PODDP Backward Pass
[0073] Continuing the example , DDP computes a second
order approximation to the value function within a local
region around a trajectory , i.e. , within a theoretical geomet
ric region that encompasses small perturbations around the
trajectory and for which the second - order approximation
remains valid . Starting from the end of the trajectory (i.e. , a
leaf node) , DDP takes second - order approximations to the
cost function and the dynamics , and uses dynamic program
ming to propagate the value function backward through
time . In this discussion , the “ value function ” computes the
expected sum of costs up to the finite horizon , corresponding
to the “ value ” of the trajectory . The “ cost function ” is a
function of the state and the control that returns a scalar ,
indicating how undesirable or costly that control is in that
state . For example , a cost function may represent how much
effort or energy a given control requires . “ Dynamics ” refers
to how the system changes over time as a function of its
current state and its controls , e.g. , x ' = f (x , u) . The general
concept of dynamic programming is discussed in Dimitri P.
Bertsekas , Dynamic Programming and Optimal Control
(2017) . During this process , locally optimal control modi
fications and linear feedback control gains are computed ,
which are used to update the trajectory during the next

where ds is implicitly decomposed into dx and oß , and
where o ' and x ' are assumed to take on their maximum
likelihood values . The second expression introduces vari
able abbreviations that are used in the continuing discussion
below . In addition , let V ' = (s'z) .
[0078] A second - order approximation ? may be taken to
the state - action value function by computing first- and
second - derivatives with respect to ds and du . In this
example , an iterative Linear Quadratic Regulator (iLQR)
approach is used to discard the Hessians of the dynamics .

Labz as , Tav ,
Qs = ? als

(lz + V) + b7 ass ass
+
ads oss

ZEZ

(8)
Qu = ? » [6 ?? , a su

+
as , Tav
adu sa

ZEZ

forward pass . Although this approach differentiates the raw belief b ,, the
re - parameterization described above makes these deriva
tives well - behaved near the simplex boundary , where the
derivatives take on small values for extremal beliefs , and
small perturbations ds do not violate the simplex constraint .
The

as ' ? s
ads and adu

[0074] The PODDP backward pass operates over a trajec
tory tree , proceeding from the leaves and propagating the
values through the observation and belief updates that take
place at each node . FIG . 5B illustrates an example of an
algorithm 504 for a backward pass according to an embodi
ment . The algorithm 504 traverses the trajectory tree in
depth - first order , and propagates the necessary derivatives
backward through the tree recursively . The algorithm 504
includes performing the second - order approximation to the
value function and returning the derivates and control
updates to be propagated backward through the trajectory
tree .

[0075] Dynamic programming over the trajectory tree
requires differentiation through the belief space dynamics at
each observation and belief update . However , differentiating
the raw belief state is problematic , because perturbations can
push the belief off the KZ1-1 - dimensional simplex .
[0076] To resolve this issue , the belief state may be
re - parameterized in terms of the unconstrained parameter
BER 12 , such that :

terms involve differentiating through the dynamics , obser
vation model , and belief update . The aV'las ' , and a Vilas ' ,
terms are the backward derivatives propagated within the A
argument in algorithm 504 of FIG . 5B .
[0079] In this example , the optimal control modification
du * for belief state perturbation ds is computed by mini
mizing the quadratic model ? :

Su * (ds) = arg min ?ids , du) = k + Kos , (9)

b (z ; B) = exp (B (z))
Ezezexp (B (z '))

and the belief space takes the form S = XxR 12. The re
parameterized belief update naturally derives from the algo
rithm 502 , of FIG . 5A , such that Bt + 1 (z) = log (bz + 1 (z)) .
[0077] To complete the derivation of the backward pass
for PODDP , the state - action value function may be defined
to operate over perturbations of s and u :

where k = -Qu'Q , is an open - loop modification to be
applied in the forward pass , and K = Quu - ' Qus is a linear
closed - loop feedback gain .
[0080] 4. Hierarchical PODDP
[0081] Because each node in the trajectory tree has IZI
successor nodes , the tree has size (IZI ? -1) / (IZI - 1) = O (IZ17) .
This exponential growth is manageable for short horizons
(e.g. , T < 5) , but may be infeasible for longer horizons (e.g. ,
such as those required for some robotics tasks) . However ,
branching on every timestep may be unnecessary for several
reasons . First , many robotics systems have high control
frequency , but much lower state estimation frequency , par
ticularly for sensor fusion from multiple modalities (e.g. ,

US 2021/0048823 A1 Feb. 18 , 2021
9

cameras , lidar , etc.) . In such cases , observation timesteps in
the planner may be aligned with times when observations
are expected to occur in the system . Second , planning with
a lower observation frequency than that of the actual system
may yield trajectories that take observation contingencies
into account but are more conservative than those that
observe at every timestep .
[0082] In this example , to derive a hierarchical PODDP
algorithm , the derivation above may be followed , but with
the trajectory partitioned into a set of k segments indexed by
To = 0 , T1 , . . . , TE = T . The value of the belief state at the
beginning of a segment may be defined similar to equation
(3) above , but accumulating the cost over ti + 1 - T ; steps , and
taking the expected value of the belief state at the end of
Ti + 1 - T ; steps :

is parameterized by a smooth function that outputs the
variance of the distributions , illustrated by the background
gradient of diagram 604 .
[0087] Diagram 602 of FIG . 6A compares the average
cumulative cost incurred by PODDP versus the two baseline
models , over 100 sampled executions in each of thirteen
environments , each with a different level of observation
uncertainty . PODDP outperformed both baselines and
exhibited lower variance .
[0088] Diagram 604 of FIG . 6A illustrates a trajectory tree
optimized by PODDP , starting from the belief b (z = Left) = 0 .
51. The tree includes a contingency plan for all possible
maximum - likelihood outcome sequences , conditioned on
the latent state values . Diagram 606 of FIG . 6A illustrates
the 100 executed trajectories used in diagram 602 for
uncertainty level = 9.1 , sampling observations and state tran
sitions from their true distributions . Among the executed
trajectories are some in which the agent first moved to one
side , then crossed back to seek the goal on the other side .
These correspond to " bad ” observations , which indicate the
incorrect latent state . Diagram 604 illustrates that PODDP
plans for such contingencies , and Diagram 606 illustrates
that it handles them gracefully , by responding conserva
tively to noisy observations so that recovery is possible
following later , better observations .
[0089] Table 1 , below , shows the results of a targeted
analysis on the mean cumulative cost incurred by each
model over 1000 executions for observation uncertainty
level = 9.1 . PODDP incurred significantly less mean cumu
lative cost than MLDDP (t (1998) = 15.1 , p < 0.00001) , and
PODDP also incurred significantly less mean cumulative
cost than PWDDP (t (1998) = 18.9 , p < 0.00001) . The mean
cumulative costs incurred by MLDDP and PWDDP were not
significantly different (t (1998) = 0.01 , p = 0.96) .

V (Xt ;, bry) = (10)

7i + 1-1
Ezubi l (xs , the , 2) + L - Eolith – 1,37i + 7 [V " (Xti + 1 , btitl)]

T = Ti

TABLE 1

Mean cumulative cost (standard error in parentheses) incurred
by each model in Experiment 1 over 1000 samples .

PODDP MLDDP PWDDP

13330.6 (244.5) 23839.8 (649.1) 23878.5 (500.7)

The second - order expansion may be taken similar to the
description above , but with respect to perturbations of each
segment . Hierarchical dynamic programming may be further
optimized by applying DDP recursions to each step of a
segment . The scenarios described below use hierarchical
PODDP with k = 3 .
[0083] B. Scenarios
[0084] As noted above , PODDPs provide a trajectory
optimization approach for solving nonlinear POMDPs
involving continuous states , actions , and observations , with
non - Gaussian beliefs over discrete latent variables . FIGS .
6A - 6C illustrate examples of latent belief space planning
scenarios according to an embodiment . These examples are
based on experiments in which PODDP was compared
against two baselines . The first baseline , “ maximum - likeli
hood DDP ” (MLDDP) , assumes the latent state with the
highest probability is the true latent state , and runs standard
DDP . At each observation point , MLDDP re - plans based on
the updated most - likely belief . The second baseline , “ Prob
ability - weighted DDP ” (PWDDP) , minimizes the expected
cost of a control sequence with respect to the current belief ,
using a version of equation (9) , with k = 1 and Tz equal to the
horizon length .
[0085] 1. Planning Under Cost Uncertainty
[0086] In the scenario illustrated in FIG . 6A , the location
of a goal is unknown , and determined by the latent world
state . The environment is structured as a “ T - Maze ” : a long
corridor that is surrounded by high - cost regions and splits
left and right at the end . A binary latent state determines
whether the goal is on the Left or Right . Goal costs that
increase quadratically with the distance from the true goal
location induce the agent to move to the goal as quickly as
possible . Diagram 604 of FIG . 6A illustrates this environ
ment , with a contour plot of the location cost overlaid , and
goal locations marked with X’s . The agent is a simulated
vehicle with non - holonomic bicycle dynamics . The obser
vation function generates a Gaussian random variable con
ditioned on the latent state z : the mean is -1 if z = Left and
1 if z = Right . The uncertainty of the observation decreases as
the vehicle moves to the end of the maze . This uncertainty

[0090] 2. Planning Under Dynamic Mode Uncertainty
[0091] The scenario illustrated in FIG . 6B is based on an
experiment designed to test whether PODDP can plan in the
belief space over uncertain , partially observable dynamical
modes of the environment . In this scenario , as illustrated in
diagram 608 of FIG . 6B , a simulated vehicle with non
holonomic bicycle dynamics was moving toward a goal
(marked by an X) over rough terrain (e.g. , “ mud ”) , which
exerts a resistive force while the vehicle is moving . The
terrain thus imposes cost due to the additional force required
to maintain a constant velocity . A binary latent state deter
mines the smoothness of the terrain to the right of the
vehicle : when the latent state z = Smooth , the terrain to the
right exerts low resistive force ; when z = Rough , the terrain
to the right is rough , with high resistive force equal to that
on the left . Diagram 608 illustrates the gradient from rough
to smooth terrain , going from left to right when the latent
state is Smooth .
[0092] In this example , the only source of information
about the latent state comes from observing the dynamics
themselves via the state sequence . This presents a challeng

US 2021/0048823 A1 Feb. 18 , 2021
10

attributable to the maximum likelihood initial belief being
Aggressive , leading MLDDP to immediately decelerate and
lose the chance to pass . By way of comparison , 1000
additional sample executions were run with b (Nice) = 0.51 .
With this prior , MLDDP succeeded at passing the Nice
driver and changing lanes behind the Aggressive driver , but
incurred a higher mean cumulative cost , as shown in Table
3. Running PODDP and PWDDP in this modified condition ,
the mean cumulative costs were not significantly different
than with the other prior .

ing planning problem : exploring the environment to infer the
value of z requires a costly detour right into the potentially
smooth area , but the payoff is large if the agent can learn that
the terrain is smooth and reduce the cost thereafter .
[0093] Diagram 608 illustrates that PODDP plans an
exploratory policy to learn the value of z . The planned
trajectory , starting from the belief b (z = Smooth) = 0.49 ,
immediately moves to the right to gain information about z .
The first observation yields strong information about z , and
the beliefs become near - certain , which the conditional plan
can then exploit - either by veering into the smooth area or
by heading directly through the mud to the goal location .
Diagram 610 of FIG . 6B illustrates 100 sampled executions
through the rough terrain environment , demonstrating the
robustness of the planned PODDP trajectory tree .
[0094] Table 2 , below , reports the mean cumulative cost
over 1000 executions for each model . PODDP incurred
significantly lower mean cumulative cost than both MLDDP ,
(t (1998) = 3.9 , p = 0.00008) and PWDDP (t (1998) = 2.7 , p = 0 .
007) . The mean cumulative costs incurred by MLDDP and
PWDDP were not significantly different (t (1998) = 0.41 , p = 0 .
68) .

TABLE 3

Mean cumulative cost (standard error in parentheses) incurred
by each model in Experiment 3 over 1000 samples .

MLDDP
(bo (Nice) = 0.51) PODDP MLDDP PWDDP

121.3 (0.46) 130.3 (1.6) 152.1 (2.0) 143.2 (2.0)

[0098] As the examples above demonstrate , PODDP is
capable of planning trajectories in a wide range of scenarios ,
with high success and low cost when compared with other
approaches . TABLE 2

Mean cumulative cost (standard error in parentheses) incurred
by each model in Experiment 2 over 1000 samples .

PODDP MLDDP PWDDP

22110.7 (124.4) 22710.7 (87.3) 22639.5 (151.9)

V. Miscellaneous ; Extensions
[0099] In an embodiment , a system includes one or more
devices , including one or more hardware processors , that are
configured to perform any of the operations described herein
and / or recited in any of the claims .
[0100] In an embodiment , one or more non - transitory
computer - readable storage media store instructions that ,
when executed by one or more hardware processors , cause
performance of any of the operations described herein
and / or recited in any of the claims .
[0101] Any combination of the features and functionalities
described herein may be used in accordance with an embodi
ment . In the foregoing specification , embodiments have
been described with reference to numerous specific details
that may vary from implementation to implementation .
Accordingly , the specification and figures are to be regarded
in an illustrative rather than a restrictive sense . The sole and
exclusive indicator of the scope of the invention , and what
is intended by the Applicant to be the scope of the invention ,
is the literal and equivalent scope of the set of claims that
issue from this application , in the specific form in which
such claims issue , including any subsequent correction .

[0095] 3. Latent Intention - Aware Interactive Lane Chang
ing
[0096] The scenario illustrated in FIG . 6C is based on an
experiment designed to test the ability of PODDP to plan
trajectories through a belief state that includes the latent
intentions of other agents , and dynamics that capture agents '
intention - dependent actions . This scenario includes another
vehicle in the state space , parameterized by a longitude and
velocity (the planner vehicle again has bicycle dynamics) .
The other vehicle dynamics are modeled using a modified
Intelligent Driver Model (IDM) , with a smooth boundary
function for identifying the leading vehicle . The latent state
represents whether the other driver is Nice or Aggressive . If
the other driver is Nice , it is assumed to have a lower desired
speed and to slow down for others . If the other driver is
Aggressive , it is assumed to have a higher desired speed and
to not slow down for others .
[0097] FIG . 6C illustrates that PODDP can plan in the
belief space of the other vehicle's latent state ; it can con
struct a contingency plan to change lanes ahead of the other
vehicle if the other vehicle is inferred to be Nice , or change
lanes behind the other vehicle if the other vehicle is inferred
to be Aggressive . Diagrams 614 and 616 of FIG . 6C illus
trate the successful execution of these plans . PWDDP also
succeeded at changing lanes ahead of the Nice driver and
changing lanes behind the Aggressive driver . However , as
shown in Table 3 below , over 1000 sample executions ,
PWDDP incurred significantly higher cost than both
PODDP (t (1998) = 14.8 , p < 0.00001) and MLDDP (t (1998)
= 8.3 , p < 0.00001) . In contrast , MLDDP failed to pass the
Nice driver and always changed lanes behind both the Nice
and Aggressive drivers , while incurring significantly higher
cost than PODDP (t (1998) = 5.3 , p < 0.00001) . This result was

VI . Computer Systems
[0102] In an embodiment , techniques described herein are
implemented by one or more special - purpose computing
devices (i.e. , computing devices specially configured to
perform certain functionality) . The special - purpose comput
ing device (s) may be hard - wired to perform the techniques
and / or may include digital electronic devices such as one or
more application - specific integrated circuits (ASICs) , field
programmable gate arrays (FPGAs) , and / or network pro
cessing units (NPUs) that are persistently programmed to
perform the techniques . Alternatively or additionally , a
computing device may include one or more general - purpose
hardware processors programmed to perform the techniques
pursuant to program instructions in firmware , memory ,
and / or other storage . Alternatively or additionally , a special
purpose computing device may combine custom hard - wired

US 2021/0048823 A1 Feb. 18 , 2021
11

logic , ASICS , FPGAs , or NPUs with custom programming
to accomplish the techniques . A special - purpose computing
device may include a desktop computer system , portable
computer system , handheld device , networking device , and /
or any other device (s) incorporating hard - wired and / or pro gram logic to implement the techniques .
[0103] For example , FIG . 7 is a block diagram of an
example of a computer system 700 according to an embodi
ment . Computer system 700 includes a bus 702 or other
communication mechanism for communicating information ,
and a hardware processor 704 coupled with the bus 702 for
processing information . Hardware processor 704 may be a
general - purpose microprocessor .
[0104) Computer system 700 also includes a main
memory 706 , such as a random access memory (RAM) or
other dynamic storage device , coupled to bus 702 for storing
information and instructions to be executed by processor
704. Main memory 706 also may be used for storing
temporary variables or other intermediate information dur
ing execution of instructions to be executed by processor
704. Such instructions , when stored in one or more non
transitory storage media accessible to processor 704 , render
computer system 700 into a special - purpose machine that is
customized to perform the operations specified in the
instructions .
[0105] Computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor 704. A storage device 710 , such as a magnetic disk
or optical disk , is provided and coupled to bus 702 for
storing information and instructions .
[0106] Computer system 700 may be coupled via bus 702
to a display 712 , such as a liquid crystal display (LCD) ,
plasma display , electronic ink display , cathode ray tube
(CRT) monitor , or any other kind of device for displaying
information to a computer user . An input device 714 , includ
ing alphanumeric and other keys , may be coupled to bus 702
for communicating information and command selections to
processor 704. Alternatively or additionally , computer sys
tem 700 may receive user input via cursor control 716 ,
such as a mouse , a trackball , a trackpad , or cursor direction
keys for communicating direction information and com
mand selections to processor 704 and for controlling cursor
movement on display 712. This input device typically has
two degrees of freedom in two axes , a first axis (e.g. , x) and
a second axis (e.g. , y) , that allows the device to specify
positions in a plane . Alternatively or additionally , computer
system 7 may include a touchscreen . Display 712 may be
configured to receive user input via one or more pressure
sensitive sensors , multi - touch sensors , and / or gesture sen
sors . Alternatively or additionally , computer system 700
may receive user input via a microphone , video camera ,
and / or some other kind of user input device (not shown) .
[0107] Computer system 700 may implement the tech
niques described herein using customized hard - wired logic ,
one or more ASICs or FPGAs , firmware , and / or program
logic which in combination with other components of com
puter system 700 causes or programs computer system 700
to be a special - purpose machine . According to one embodi
ment , the techniques herein are performed by computer
system 700 in response to processor 704 executing one or
more sequences of one or more instructions contained in
main memory 706. Such instructions may be read into main
memory 706 from another storage medium , such as storage

device 710. Execution of the sequences of instructions
contained in main memory 706 causes processor 704 to
perform the process steps described herein . Alternatively or
additionally , hard - wired circuitry may be used in place of or
in combination with software instructions .
[0108] The term “ storage media ” as used herein refers to
one or more non - transitory media storing data and / or
instructions that cause a machine to operate in a specific
fashion . Such storage media may comprise non - volatile
media and / or volatile media . Non - volatile media includes ,
for example , optical or magnetic disks , such as storage
device 710. Volatile media includes dynamic memory , such
as main memory 706. Common forms of storage media
include , for example , a floppy disk , a flexible disk , hard disk ,
solid state drive , magnetic tape or other magnetic data
storage medium , a CD - ROM or any other optical data
storage medium , any physical medium with patterns of
holes , a RAM , a programmable read - only memory (PROM) ,
an erasable PROM (EPROM) , a FLASH - EPROM , non
volatile random - access memory (NVRAM) , any other
memory chip or cartridge , content - addressable memory
(CAM) , and ternary content - addressable memory (TCAM) .
[0109] A storage medium is distinct from but may be used
in conjunction with a transmission medium . Transmission
media participate in transferring information between stor
age media . Examples of transmission media include coaxial
cables , copper wire , and fiber optics , including the wires that
comprise bus 702. Transmission media may also take the
form of acoustic or light waves , such as those generated
during radio - wave and infra - red data communications .
[0110] Various forms of media may be involved in carry
ing one or more sequences of one or more instructions to
processor 704 for execution . For example , the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer . The remote computer may load
the instructions into its dynamic memory and send the
instructions over a network , via a network interface control
ler (NIC) , such as an Ethernet controller or Wi - Fi controller .
A NIC local to computer system 700 may receive the data
from the network and place the data on bus 702. Bus 702
carries the data to main memory 706 , from which processor
704 retrieves and executes the instructions . The instructions
received by main memory 706 may optionally be stored on
storage device 710 either before or after execution by
processor 704 .
[0111] Computer system 700 also includes a communica
tion interface 718 coupled to bus 702. Communication
interface 718 provides a two - way data communication cou
pling to a network link 720 that is connected to a local
network 722. For example , communication interface 718
may be an integrated services digital network (ISDN) card ,
cable modem , satellite modem , or a modem to provide a data
communication connection to a corresponding type of tele
phone line . As another example , communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN . Wire
less links may also be implemented . In any such implemen
tation , communication interface 718 sends and receives
electrical , electromagnetic or optical signals that carry digi
tal data streams representing various types of information .
[0112] Network link 720 typically provides data commu
nication through one or more networks to other data devices .
For example , network link 720 may provide a connection
through local network 722 to a host computer 724 or to data

US 2021/0048823 A1 Feb. 18 , 2021
12

equipment operated by an Internet Service Provider (ISP)
726. ISP 726 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “ Internet ” 728. Local
network 722 and Internet 728 both use electrical , electro
magnetic or optical signals that carry digital data streams .
The signals through the various networks and the signals on
network link 720 and through communication interface 718 ,
which carry the digital data to and from computer system
700 , are example forms of transmission media .
[0113] Computer system 700 can send messages and
receive data , including program code , through the network
(s) , network link 720 and communication interface 718. In
the Internet example , a server 730 might transmit a
requested code for an application program through Internet
728 , ISP 726 , local network 722 , and communication inter
face 718 .
[0114] The received code may be executed by processor
704 as it is received , and / or stored in storage device 710 , or
other non - volatile storage for later execution .

VII . Networks and Cloud Computing
[0115] In an embodiment , a computer network provides
connectivity among a set of nodes running software that
utilizes techniques as described herein . The nodes may be
local to and / or remote from each other . The nodes are
connected by a set of links . Examples of links include a
coaxial cable , an unshielded twisted cable , a copper cable ,
an optical fiber , and a virtual link .
[0116] A subset of nodes implements the co puter net
work . Examples of such nodes include a switch , a router , a
firewall , and a network address translator (NAT) . Another
subset of nodes uses the computer network . Such nodes (also
referred to as “ hosts ”) may execute a client process and / or
a server process . A client process makes a request for a
computing service (for example , a request to execute a
particular application and / or retrieve a particular set of data) .
A server process responds by executing the requested ser
vice and / or returning corresponding data .
[0117] A computer network may be a physical network ,
including physical nodes connected by physical links . A
physical node is any digital device . A physical node may be
a function - specific hardware device . Examples of function
specific hardware devices include a hardware switch , a
hardware router , a hardware firewall , and a hardware NAT .
Alternatively or additionally , a physical node may be any
physical resource that provides compute power to perform a
task , such as one that is configured to execute various virtual
machines and / or applications performing respective func
tions . A physical link is a physical medium connecting two
or more physical nodes . Examples of links include a coaxial
cable , an unshielded twisted cable , a copper cable , and an
optical fiber .
[0118] A computer network may be an overlay network .
An overlay network is a logical network implemented on top
of another network (for example , a physical network) . Each
node in an overlay network corresponds to a respective node
in the underlying network . Accordingly , each node in an
overlay network is associated with both an overlay address
(to address the overlay node) and an underlay address (to
address the underlay node that implements the overlay
node) . An overlay node may be a digital device and / or a
software process (for example , a virtual machine , an appli
cation instance , or a thread) . A link that connects overlay

nodes may be implemented as a tunnel through the under
lying network . The overlay nodes at either end of the tunnel
may treat the underlying multi - hop path between them as a
single logical link . Tunneling is performed through encap
sulation and decapsulation .
[0119] In an embodiment , a client may be local to and / or
remote from a computer network . The client may access the
computer network over other computer networks , such as a
private network or the Internet . The client may communicate
requests to the computer network using a communications
protocol , such as Hypertext Transfer Protocol (HTTP) . The
requests are communicated through an interface , such as a
client interface (such as a web browser) , a program interface ,
or an application programming interface (API) .
[0120] In an embodiment , a computer network provides
connectivity between clients and network resources . Net
work resources include hardware and / or software configured
to execute server processes . Examples of network resources
include a processor , a data storage , a virtual machine , a
container , and / or a software application . Network resources
may be shared amongst multiple clients . Clients request
computing services from a computer network independently
of each other . Network resources are dynamically assigned
to the requests and / or clients on an on - demand basis . Net
work resources assigned to each request and / or client may
be scaled up or down based on , for example , (a) the
computing services requested by a particular client , (b) the
aggregated computing services requested by a particular
tenant , and / or (c) the aggregated computing services
requested of the computer network . Such a computer net
work may be referred to as a “ cloud network . "
[0121] In an embodiment , a service provider provides a
cloud network to one or more end users . Various service
models may be implemented by the cloud network , includ
ing but not limited to Software - as - a - Service (SaaS) , Plat
form - as - a - Service (PaaS) , and Infrastructure - as - a - Service
(IaaS) . In SaaS , a service provider provides end users the
capability to use the service provider's applications , which
are executing on the network resources . In PaaS , the service
provider provides end users the capability to deploy custom
applications onto the network resources . The custom appli
cations may be created using programming languages ,
libraries , services , and tools supported by the service pro
vider . In IaaS , the service provider provides end users the
capability to provision processing , storage , networks , and
other fundamental computing resources provided by the
network resources . Any applications , including an operating
system , may be deployed on the network resources .
[0122] In an embodiment , various deployment models
may be implemented by a computer network , including but
not limited to a private cloud , a public cloud , and a hybrid
cloud . In a private cloud , network resources are provisioned
for exclusive use by a particular group of one or more
entities (the term " entity ” as used herein refers to a corpo
ration , organization , person , or other entity) . The network
resources may be local to and / or remote from the premises
of the particular group of entities . In a public cloud , cloud
resources are provisioned for multiple entities that are
independent from each other (also referred to as “ tenants ” or
" customers ”) . In a hybrid cloud , a computer network
includes a private cloud and a public cloud . An interface
between the private cloud and the public cloud allows for
data and application portability . Data stored at the private
cloud and data stored at the public cloud may be exchanged

US 2021/0048823 A1 Feb. 18 , 2021
13

through the interface . Applications implemented at the pri
vate cloud and applications implemented at the public cloud
may have dependencies on each other . A call from an
application at the private cloud to an application at the public
cloud (and vice versa) may be executed through the inter
face .
[0123] In an embodiment , a system supports multiple
tenants . A tenant is a corporation , organization , enterprise ,
business unit , employee , or other entity that accesses a
shared computing resource (for example , a computing
resource shared in a public cloud) . One tenant (through
operation , tenant - specific practices , employees , and / or iden
tification to the external world) may be separate from
another tenant . The computer network and the network
resources thereof are accessed by clients corresponding to
different tenants . Such a computer network may be referred
to as a “ multi - tenant computer network . ” Several tenants
may use a same particular network resource at different
times and / or at the same time . The network resources may
be local to and / or remote from the premises of the tenants .
Different tenants may demand different network require
ments for the computer network . Examples of network
requirements include processing speed , amount of data
storage , security requirements , performance requirements ,
throughput requirements , latency requirements , resiliency
requirements , Quality of Service (QoS) requirements , tenant
isolation , and / or consistency . The same computer network
may need to implement different network requirements
demanded by different tenants .
[0124] In an embodiment , in a multi - tenant computer
network , tenant isolation is implemented to ensure that the
applications and / or data of different tenants are not shared
with each other . Various tenant isolation approaches may be
used . In an embodiment , each tenant is associated with a
tenant ID . Applications implemented by the computer net
work are tagged with tenant IDs . Additionally or alterna
tively , data structures and / or datasets , stored by the com
puter network , are tagged with tenant IDs . A tenant is
permitted access to a particular application , data structure ,
and / or dataset only if the tenant and the particular applica
tion , data structure , and / or dataset are associated with a same
tenant ID . As an example , each database implemented by a
multi - tenant computer network may be tagged with a tenant
ID . Only a tenant associated with the corresponding tenant
ID may access data of a particular database . As another
example , each entry in a database implemented by a multi
tenant computer network may be tagged with a tenant ID .
Only a tenant associated with the corresponding tenant ID
may access data of a particular entry . However , the database
may be shared by multiple tenants . A subscription list may
indicate which tenants have authorization to access which
applications . For each application , a list of tenant IDs of
tenants authorized to access the application is stored . A
tenant is permitted access to a particular application only if
the tenant ID of the tenant is included in the subscription list
corresponding to the particular application .
[0125] In an embodiment , network resources (such as
digital devices , virtual machines , application instances , and
threads) corresponding to different tenants are isolated to
tenant - specific overlay networks maintained by the multi
tenant computer network . As an example , packets from any
source device in a tenant overlay network may only be
transmitted to other devices within the same tenant overlay
network . Encapsulation tunnels may be used to prohibit any

transmissions from a source device on a tenant overlay
network to devices in other tenant overlay networks . Spe
cifically , the packets , received from the source device , are
encapsulated within an outer packet . The outer packet is
transmitted from a first encapsulation tunnel endpoint in
communication with the source device in the tenant overlay
network) to a second encapsulation tunnel endpoint in
communication with the destination device in the tenant
overlay network) . The second encapsulation tunnel endpoint
decapsulates the outer packet to obtain the original packet
transmitted by the source device . The original packet is
transmitted from the second encapsulation tunnel endpoint
to the destination device in the same particular overlay
network .
What is claimed is :
1. One or more non - transitory computer - readable media

storing instructions that , when executed by one or more
processors , cause the one or more processors to perform
operations comprising :

during execution of an autonomous agent configured to
control operation of a physical mechanism , obtaining a
current observation of a physical environment ;

based at least on the current observation of the physical
environment , generating a trajectory tree that repre
sents a plurality of possible trajectories in a belief
space ,
wherein a plurality of nodes of the trajectory tree

represent values of a continuous observation , a con
tinuous state , and a continuous control , each node
being associated with one of a plurality of timesteps
along the plurality of possible trajectories , and

wherein branches from inner nodes to child nodes in
the plurality of nodes correspond to possible out
comes and observations of a multi - modal latent state ;

determining a current value of the continuous control
associated with a current node of the plurality of nodes ;
and

applying the current value of the continuous control to
operation of the physical mechanism .

2. The one or more non - transitory computer - readable
media of claim 1 , wherein generating the trajectory tree
comprises :

(a) in a first forward pass , initializing the values of the
continuous control for the plurality of nodes ;

(b) in a backward pass , starting at a plurality of leaf nodes
in the plurality of nodes , propagating results of a
derivative function through parent nodes in the plural
ity of nodes ; and

(c) in a second forward pass , applying an optimization
function to values of the continuous control , based at
least on the results of the derivative function .

3. The one or more non - transitory computer - readable
media of claim 2 , wherein (b) and (c) are repeated iteratively
until an optimization termination criterion is satisfied .

4. The one or more non - transitory computer - readable
media of claim 2 , wherein the first forward pass comprises
generating the plurality of nodes at least by :

(i) generating a root node of the trajectory tree , based at
least on the current observation ;

(ii) determining a plurality of maximum likelihood out
comes for a plurality of modes of the multi - modal
latent state associated with the current observation ;

US 2021/0048823 A1 Feb. 18 , 2021
14

(iii) determining a plurality of maximum likelihood obser
vations associated with the plurality of maximum like
lihood outcomes ;

(iv) generating a plurality of child nodes of the root node ,
corresponding to the plurality of maximum likelihood
outcomes and the plurality of maximum likelihood
observations ; and

(v) performing (ii) , (iii) , and (iv) recursively , starting at
the plurality of child nodes of the root node , until a
finite horizon is reached .

5. The one or more non - transitory computer - readable
media of claim 2 , wherein the first forward pass comprises
generating the plurality of nodes at least by :

(i) generating a root node of the trajectory tree , based at
least on the current observation ;

(ii) sampling a plurality of possible outcomes from a
belief distribution associated with the current observa
tion ;

(iii) sampling a plurality of possible observations associ
ated with the plurality of possible outcomes ;

(iv) generating a plurality of child nodes of the root node ,
corresponding to the plurality of possible outcomes and
the plurality of possible observations ; and

(v) performing (ii) , (iii) , and (iv) recursively , starting at
the plurality of child nodes of the root node , until a
finite horizon is reached .

6. The one or more non - transitory computer - readable
media of claim 1 , wherein generating the trajectory tree
comprises updating values in a preexisting data structure
that represents the trajectory tree .

7. The one or more non - transitory computer - readable
media of claim 1 , wherein timesteps associated with the
plurality of nodes are separated by time intervals that are
greater than a sampling rate used by one or more autono
mous agent sensors providing values of the continuous
observation .

8. The one or more non - transitory computer - readable
media of claim 1 , wherein the continuous state is a partially
observable continuous state .

9. The one or more non - transitory computer - readable
media of claim 1 , wherein the multi - modal latent state is
bimodal .

10. The one or more non - transitory computer - readable
media of claim 1 , wherein the physical mechanism is a
steering mechanism of a vehicle .

11. One or more non - transitory computer - readable media
storing instructions that , when executed by one or more
processors , cause the one or more processors to perform
operations comprising :

during execution of an autonomous agent configured to
control operation of a physical mechanism , generating
a trajectory tree that represents a plurality of possible
trajectories in a belief space ,
wherein a plurality of nodes of the trajectory tree

represent values of a continuous observation , a con
tinuous state , and a continuous control , each node
being associated with one of a plurality of timesteps
along the plurality of possible trajectories , and

wherein branches from inner nodes to child nodes in
the plurality of nodes correspond to possible out
comes and observations of a multi - modal latent state ;

determining that a current observation corresponds most
closely to a closest - fit node in the plurality of nodes ;

obtaining a current value of the continuous control asso
ciated with the closest - fit node ; and

applying the current value of the continuous control to
operation of the physical mechanism .

12. The one or more non - transitory computer - readable
media of claim 11 , wherein generating the trajectory tree
comprises :

(a) in a first forward pass , initializing the values of the
continuous control for the plurality of nodes ;

(b) in a backward pass , starting at a plurality of leaf nodes
in the plurality of nodes , propagating results of a
derivative function through parent nodes in the plural
ity of nodes ; and

(c) in a second forward pass , applying an optimization
function to values of the continuous control , based at
least on the results of the derivative function .

13. The one or more non - transitory computer - readable
media of claim 12 , wherein (b) and (c) are repeated itera
tively until an optimization termination criterion is satisfied .

14. The one or more non - transitory computer - readable
media of claim 12 , wherein the first forward pass comprises
generating the plurality of nodes at least by :

(i) generating a root node of the trajectory tree , based at
least on an initial observation ;

(ii) determining a plurality of maximum likelihood out
comes for a plurality of modes of the multi - modal
latent state associated with the initial observation ;

(iii) determining a plurality of maximum likelihood obser
vations associated with the plurality of maximum like
lihood outcomes ;

(iv) generating a plurality of child nodes of the root node ,
corresponding to the plurality of maximum likelihood
outcomes and the plurality of maximum likelihood
observations ; and

(v) performing (ii) , (iii) , and (iv) recursively , starting at
the plurality of child nodes of the root node , until a
finite horizon is reached .

15. The one or more non - transitory computer - readable
media of claim 12 , wherein the first forward pass comprises
generating the plurality of nodes at least by :

(i) generating a root node of the trajectory tree , based at
least on an initial observation ;

(ii) sampling a plurality of possible outcomes from a
belief distribution associated with the initial observa
tion ;

(iii) sampling a plurality of possible observations associ
ated with the plurality of possible outcomes ;

(iv) generating a plurality of child nodes of the root node ,
corresponding to the plurality of possible outcomes and
the plurality of possible observations ; and

(v) performing (ii) , (iii) , and (iv) recursively , starting at
the plurality of child nodes of the root node , until a
finite horizon is reached .

16. The one or more non - transitory computer - readable
media of claim 11 , the operations further comprising :

adjusting the current value of the continuous control
based at least on a difference between the current
observation and possible value of the continuous
observation associated with the particular node .

17. The one or more non - transitory computer - readable
media of claim 11 , wherein timesteps associated with the
plurality of nodes are separated by time intervals that are

US 2021/0048823 A1 Feb. 18 , 2021
15

greater than a sampling rate used by one or more autono
mous agent sensors providing values of the continuous
observation .

18. The one or more non - transitory computer - readable
media of claim 11 , wherein the continuous state is a par
tially - observable continuous state .

19. The one or more non - transitory computer - readable
media of claim 11 , wherein the multi - modal latent state is
bimodal .

20. The one or more non - transitory computer - readable
media of claim 11 , wherein the physical mechanism is a
steering mechanism of a vehicle .

