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Abstract—Planetary exploration is full of challenges. Data
bandwidth is very limited between planetary rovers and ground-
based data system. What’s worse, even though NASA has
accumulated over 34 million images from various missions, it
requires significant effort and is hardly possible for any scientist
to go through all of them. In order to improve the degree of
automation and the efficiency of these processes, we propose
a system leveraging machine learning for planetary rovers to
actively look for scientifically interesting and valuable features
according to text instructions from scientists and prioritize the
images captured onboard with those features for downlink. Such
an image prioritization mechanism can also be naturally applied
to content-based image search through text description in any
local planetary image data server, allowing scientists to search for
images with desired features without going through them one by
one. Besides theoretical and engineering details of our proposed
approach, we also present both quantitative and qualitative
evaluation of the system along with some concrete examples.

I. INTRODUCTION

Over the last few decades, NASA has acquired an enormous
amount of image data. More than 34 million images are
made available to the public through NASA’s Planetary Data
System (PDS), of which over 25 million are from various
Mars missions, including Spirit (MER-A), Oppotunity (MER-
B) and Curiosity (MSL). The number continues to grow due
to ongoing missions, where more than 200K images have been
accumulated from mission InSight alone in less than a year.
And much more image data are expected to be produced from
incoming and future missions, such as Mars 2020. Two crucial
questions then arise: (1) How can we prioritize the images
collected onboard to downlink due to the limited bandwidth?
(2) How can we search our local database efficiently for
images with desired geologic and/or non-geologic features?

These two questions are nontrivial to answer, since there is
no straightforward rule-based logic that can deal with images
conveniently and efficiently. With the latest advance in deep
learning [8, 16, 17], promising methods were proposed for
problems involving planetary image data processing [25, 22,
28]. However, to the best of our knowledge, research have

seldom been done on helping machines ”understand” multiple
objects and their relationships in visual data (e.g. images) in
planetary exploration domain.

In this paper, we propose an approach to tackle these
problems by leveraging an LSTM-based image captioning
neural network architecture with visual attention mechanism,
which pays attention on different parts of an image at different
times to encode them into embeddings and then translates
these embeddings into a meaningful sequence of words (a
caption) for the image. Relations of different parts in the image
are captured by the ordering of attentions, and are recovered
into relation/connection words in its caption. Remotely, images
captured by a planetary rover can be captioned in such a
fashion and prioritized in accord to the text similarity between
their captions and scientist inputs (text descriptions of desired
features to look for). Locally, present image data (e.g. the ones
in NASA PDS) can also be captioned, after which users can
search these image data through text and results are returned
in decreasing order of text similarity. An implementation of
text similarity metric is also proposed in our work. Moreover,
besides validating the image captioning performance of the
architecture, we also developed an internal web tool to sim-
ulate remote image downlink tasks with text descriptions for
desired features from scientists, and integrated a beta version
of text-based search tool for local images onto NASA PDS1

to encourage public test [20].

II. RELATED WORK

Researchers have been working for many years on automat-
ing the data analysis process for planetary data.

Autonomous image data processing through feature engi-
neering and rule-based methods [3, 6] have been studied and
applied on prior missions through the integration into the
Onboard Autonomous Science Investigation System (OASIS)
[5]. These methods, however, depend heavily on the bank
of carefully selected features and hand-crafted rules, which

1https://pds-imaging.jpl.nasa.gov/search/

https://pds-imaging.jpl.nasa.gov/search/
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Fig. 1: An illustration on the architecture of SCOTI.

limit their scalability beyond images of rocks, clouds and dust
devils. A method that combines both feature engineering and
learning for image classification [29] has also been proposed.
But since it only learns how to combine predefined descriptors
(e.g. SURF and SIFT) rather than learning those low-level fea-
ture descriptors (filters) from scratch, the bank of descriptors
constrain its capability of identifying other meaningful features
from an image.

Recent advance in machine learning and deep learning
introduced a variety of new approaches in processing planetary
data, especially visual data. Deep Mars [28] takes advantage of
recent development in convolutional neural networks (CNNs)
to classify engineering-focused rover images (e.g. those of
rover wheels, drill holes, etc.) and orbital images. However,
since Deep Mars adopts the architecture of AlexNet [16], it
can only recognize one single object in an image. Pixel-wise
segmentation approaches were explored by researchers. Tex-
tureCam [25] leverages random forests to detect and classify
rocks onboard. The Soil Property and Object Classification
(SPOC) [22] segments Mars terrains in an image by utilizing
a fully-convolutional neural network (FCNN). Although these
methods are capable of segmenting and classifying multiple
objects (regions) in an image, they require training datasets
with pixel-wise segmentation annotations that are expensive
to collect, and fall short of understanding the relationships
among different objects in a scene.

Extracted features and predicted labels from the methods
mentioned above can be used in both data prioritization and lo-
cal image search. [3, 6] prioritizes images to downlink through
key target signature identification, and [29] determines data
priority by feature-based image classification results. Again,
these approaches rely heavily on manual feature engineering,
require users to input unintuitive feature vectors to specify
high-priority targets and are constrained to limited object
categories. [28] searches engineering-focused images through
predicted labels and was integrated into NASA PDS. But it is
incapable of identifying multiple objects or their relationships

in an image.
In this paper, we describe our work that leverages recently

developed end-to-end image captioning methods [15, 27] for a
machine to ”understand” planetary images. These methods are
advantageous because they can identify multiple objects along
with their relationships in an image, and translate the visual
information into human understandable text descriptions. The
problems of data prioritization and local image search are then
converted to the problem of finding similar text descriptions,
which has been researched on for a long time [10, 11]. More
concretely, the image captioning architecture we use is based
on Long Short-term Memory (LSTM) networks [12] along
with attention mechanisms [1, 30], and we adapt the Bilingual
Evaluation Understudy (BLEU) metric to evaluate similarity
between generated image captions and user inputs.

III. SCIENCE CAPTIONING OF TERRAIN IMAGES

This section describes the Science Captioning of Terrain
Images (SCOTI) network for tackling the problem of ”under-
standing” planetary images (primarily terrain images) for a
machine. SCOTI extracts visual features from a raw image in-
put into a feature map (a multidimensional vector), repeatedly
pays attention to different parts of the image (represented by
the feature map) and generates a caption (a text description)
for the image word by word.

A. Image Captioning Networks

The objective of an image captioning network is to learn
an optimal parameters θ∗ from a given training dataset D that
maximizes the (logarithmic) probability of occurrence of all
the image-caption pairs in the dataset.

θ∗ = argmax
θ

∑
(I,y)∈D

log p(y|I; θ)

= argmax
θ

∑
(I,y)∈D

K∑
t=1

log p(yt|I, y1, · · · , yt−1; θ)
(1)



where I is an input image, y = {y1, · · · , yK} with K < Kmax

is the corresponding caption with length K, and Kmax is the
maximum number of words in any caption. We also expand
p(y|I; θ) by the fact that a word yt in a caption y depends
on both the input image I the the previously generated word
sequence {y1, · · · , yt−1}. The basic structure of an end-to-end
image captioning network is straightforward [27], consisting of
two components: a visual feature extractor and a text decoder,
as shown in figure 1 (b) and (d).

A raw input image can be very large in size, which is
computationally expensive to process directly. So we need a
visual feature extractor to extract the most informative features
from the input image for the processing steps that follow.
The visual feature extractor f extracts visual features from an
image I and encodes them in to a fixed and lower dimensional
feature vector x representing the image. Practically, to make
the feature extractor differentiable and trainable, we implement
it with convolutional layers following the VGG-19 architecture
[23] and parameterize it with θf .

x = f(I; θf ) (2)

A text decoder T then follows to translate the feature vector
x into a caption y. One challenge is that the length of y may
vary. Thus we implement the text decoder with an LSTM (see
B for details about LSTMs), which is capable of generating
outputs with variable lengths. And it is natural as well to
use an LSTM to model the dependency p(yt|I, y1, · · · , yt−1)
of a word yt on the prior word sequence. Similarly, we
parameterize the text decoder with θT .

y = T (x; θT ) (3)

Putting together, an end-to-end image captioning network
can be simply written as y = T (f(I; θf ); θT ) and we denote
θ = (θf , θT ) as the complete set of parameters for the network.
Given the image-caption pairs from a training dataset D,
we can train the network by rolling out the LSTM units in
according to the target caption length and optimizing θ with
any gradient method [14] in a supervised manner with target
images as input and target captions as output.

B. Visual Attention Mechanisms

At each stage 1 ≤ t ≤ K, the text decoder LSTM generates
a word yt and requires an external input xt (see B). With only
one single feature vector x = f(I; θf ) extracted from the input
image I , there are two workarounds to fulfill the requirements.
(1) We may set the first external input x1 = x and the rest
xt = 0,∀t > 1, but this approach may lead to the lack of
sufficient input information for the LSTM units at t > 1 to
generate the proper words. Or (2) we may set xt = x, ∀1 ≤
t ≤ K, which however may also cause confusion easily for
the network, since the external input at any stages is identical.

The above two issues can be resolved by the introduction
of visual attention, as shown in figure 1 (c), which constrains
the attention of the network to particular parts of the input
image at each stage t. Then the corresponding external input
xt becomes the attention-weighted visual information from the

input image, and thus varies at different stages. In this work,
we adopt the Bahdanau (soft) attention [1, 30] among other
approaches [19, 13]. A attention generator g parameterized
by θg , considering both the current step feature xt and the
previous step output yt−1, produces an attention weight vector
αt.

et,i = g(xt,i, ht−1; θg)

αt,i =
exp(et,i)∑L
j=1 exp(et,j)

(4)

In Eq.4 above, the generator g generates a pre-normalized
weight et,i for each dimension xt,i in xt individually, where
1 ≤ i ≤ L and L is the size of xt. The weights are then
normalized with a softmax function to produce an attention

mask αt =
[
αt,1 · · · αt,L

]T
such that αt,i > 0,∀t, i and∑L

i=1 αt,i = 1,∀t. The raw feature vector input xt to the
LSTM is then augmented by the attention weighted average
feature to indicate the attention region.

x
(LSTM)
t =

(
xt,

L∑
i=1

αt,ixt,i

)
(5)

Here x(LSTM)
t denotes the external input to the LSTM at stage

t. The training procedure remains the same as mentioned in
the previous section.

IV. TEXT SIMILARITY FOR IMAGE PRIORITIZATION AND
LOCAL SEARCH

While onboard image prioritization requires a remote device
to prioritize image data in accord to scientist inputs to down-
link, local image search requires a local server to prioritize
image search results in accord to user inputs to return to
the user. These two tasks are similar in the sense that they
both prioritize images according to some inputs. We propose
that natural language description (in text) is an intuitive and
convenient form of such inputs, since it does not require
comprehensive understanding of the system to design a set
of rules and target feature vectors to look for as in [3, 6, 29].
With text descriptions being inputs and the SCOTI network
generating captions for images captured onboard and/or stored
on a local server, we essentially converted the remote/local
image prioritization problem into a text similarity evaluation
task.

A large amount of prior work has been done on text
similarity evaluation in the machine translation community
[11]. Among those proposed approaches, we follow the BLEU
metric [21] to evaluate the similarity between auto-generated
image captions and scientist/user inputs. BLEU can evaluate
the similarity between a candidate text (an auto-generated
image caption) and a set of reference texts (scientist/user
inputs) jointly, which is advantageous since it is common
to have multiple inputs from scientists to describe a set of
target features to look for. And BLEU also accounts for both
the word-wise and the phase-wise match rate between two
texts through n-gram precision. An n-gram is a consecutive
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Fig. 2: Workflow of the data aggregation and model retraining pipeline.

sequence of n word(s). Given a candidate c and a set of
reference texts R, the n-gram precision pn(c,R) defines a
metric that tells how much the candidate c matches the
reference set R.

pn(c,R) =

∑
g∈Gn,c

min
{
Cg|c,maxr∈R Cg|r

}∑
g′∈Gn,c

Cg′|c
(6)

where Gn,t denotes the set of all unique n-grams in text t,
while Cg|t counts the occurrences of an n-gram g in t. And
the minimization term in the numerator essentially gives the
number of non-repeated occurrences of an n-gram g in both
the candidate c and any of the reference r ∈ R. However, pn
tends to favor shorter candidates. To reduce such an artifact,
a penalty term

η (c, r) =

 1 if L(c) > L(r)

exp
(
1− L(r)

L(c)

)
if L(c) ≤ L(r)

is introduced to penalize candidates with short length, where
L(c) and L(r) denote the lengths of candidate c and reference
r respectively. The BLEU score sN (c,R), which accounts both
the length of candidate c and all n-grams with n from 1 up
to N , can then be defined.

sN (c,R) = η (c, rML) exp

(
N∑
n=1

wn log pn (c,R)

)
where rML is the reference text with the maximum length in
the reference set R, and the hyperparameter wn weights the
importance of n-grams with different length n. The higher

sN a caption is associated with, the high similarity it has
to the set of user/scientist inputs. Practically, the logarithmic
BLEU score log sN is more efficient to compute, and we may
further improve onboard image prioritization by combining
other common strategies, such as novelty detection and repre-
sentative sampling [4].

V. DATA PIPELINE

An important assumption made by supervised learning is
data from the training dataset and the testing dataset should be
drawn from the same distribution. It implies besides sufficient
quantity and variance of the training data, it is also vital to have
the training dataset update-to-date so that the SCOTI network
model can be retrained on it and hence is applicable to the
acquired images from latest missions. For this reason, we build
a data pipeline to import and caption incoming images, allow
expert reviews, and retrain the SCOTI model to keep it update-
to-data.

As shown in figure 2, the data pipeline starts with initial
annotated data. After (a) updating the annotated dataset, train-
ing data are used to (b) train the SCOTI model. The trained
model can be sent to a remote rover to support onboard image
prioritization, and used to (d) generate captions from new
images from the image database (c) updated with incoming
images. The auto-generated captions for all images will be (e)
updated to the caption database, where the image-caption data
can be exported to a local server to support local image search.
New images with captions generated by SCOTI are sent to
OpenAnnotator for open/expert review, after which reviewed
and annotated data are (a) updated to the annotated dataset for



the next round of model training. A data aggregation rate δ is
also defined to indicate the proportion of new annotated data
compared to those used in the last round of model training.
Only after δ > 0.5 will the next round of model training begin.

A. OpenAnnotator: A Web-based Multiuser Annotation Tool

OpenAnnotator is a web-based multi-user tool we developed
for image-caption data review and annotation. With this tool,
users/experts can vote for a caption or propose a different
version for an image from the database.

(a) Gallery Page

(b) Annotation Page

Fig. 3: The user interface of OpenAnnotator.

OpenAnnotator helps minimize the labor required for data
annotation, since an auto-generated caption is provided in the
first place for each image, which users can directly vote for.
On the other hand, users may propose a different caption by
referring to existing ones so that they do not have to conceive
a new one from scratch. Moreover, it enables data annotation
in a distributed manner. Its potential integration to public data
servers such as NASA’s PDS prefigures the access to the help
and the collective intelligence from all users on these servers
for data review and annotation, which may also bring about
positive social effect by encouraging users’ participation.

VI. THE MARTIAN IMAGE CAPTION DATASET

We created the Martian Image Caption Dataset (MICD)
using OpenAnnotator (see section V-A) to evaluate the SCOTI
network as well as the proposed image data prioritization and
local image search approaches. The dataset contains more than
12,500 pre-processed images captured by the Mars Science
Laboratory (MSL) rover, among which 1,250 images are
annotated with expert captions. And the number of annotated
images continues to grow.

The images from MICD primarily capture Martian geologic
features, especially terrain features, where more than one
objects or feature categories may exist in the same image.
These images can be grayscale or colorful, and non-geologic
features may also be found in them, such as the ones in the
last two rows on the right in figure 4.

Expert-annotated captions in MICD consists of a rich set of
words and phases describing geologic features, non-geologic
features, colors and relations. The top-20 features in several
different categories are shown in figure 5, and a more com-
prehensive summary of the features identified from MICD is
also provided in A.

VII. EXPERIMENT AND RESULTS

We conducted both quantitative and qualitative experiment
to evaluate the our proposed approach and system. In section
VII-A, results of quantitative experiment on evaluating the
performance of the SCOTI network are presented, including
details about its training process and metric scores on valida-
tion data. In sections VII-B and VII-C, qualitative experiment
results of onboard image prioritization simulation and local
image search are discussed.

A. Training and Evaluating SCOTI on MICD

Regardless of the extensive potential applications where the
SCOTI system can be used in planetary and astronomical
domains, we evaluated it primarily on Martian data from
MICD in this work. In this section, we will discuss the training
details and systematical evaluation of the SCOTI network. We
also present quantitative results through the learning curve and
metric scores, along with some concrete examples.

In the experiment, we split the annotated data from MICD
into the training and validation datasets in a ratio of 0.9 : 0.1.
Unlabelled data from MICD constitutes the test dataset. And
we adopt the architecture of VGG-19 convolutional layers [23]
as the visual feature extractor, as shown in 1 (b). Due to
the limited size of annotated data from MICD, the weights
θf of the visual feature extractor are pretrained on ImageNet
[8] to prevent overfitting. After pretrained, θf is fixed while
training (fine-tuning) the joint parameter θT of the visual
attention layer and the text decoder, as shown in figure 1
(c) and (d), on the training dataset. The training process is
set up as a supervised learning problem, where the inputs
are raw images and the outputs are the corresponding expert
annotated captions. Adam optimizer [14] is used to optimize
the cross-entropy loss between the predicted and the ground-
truth captions. A training process for 3500 steps (100 epochs
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Fig. 4: Some data samples from MICD, where 4 image-caption pairs annotated by experts are presented on the left, and 16
more image samples are presented on the right to demonstrate the data variety of MICD.
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Fig. 5: Top-20 features in different categories identified from the MICD dataset.

with 35 batches in each one of them) is shown with the
learning curves, including the cross entropy loss curve and
the accuracy curve, in figure 7.

Along the training process, the SCOTI model performance
is evaluated with metric scores, including BLEU-1, -2, -3, -4
[21], the Metric for Evaluation of Translation with Explicit
Ordering (METEOR) [2], the Recall-Oriented Understudy
for Gisting Evaluation for Longest Common Subsequence
(ROUGE-L) [18] and the Consensus-based Image Description
Evaluation (CIDEr) [26]. Figure 8 visualizes these scores on
the MICD validation dataset along the 3500 training steps.

After trained for 3500 steps, the SCOTI network performs

reasonably well with respect to the validation metric scores
in comparison to the state-of-the-art reported in [30], where
the visual feature extractor is also pretrained but the image
captioning model is fine-tuned in more complex domains
implicitly defined by Flickr8k, Flickr30k and MS COCO
datasets. Table I compares the metric scores between SCOTI
on MICD and the state-of-the-art.

An interesting observation is that though SCOTI trained on
MICD almost outperforms the state-of-the-art trained on more
datasets in more complex domains, but has a lower BLEU-1
score. More training steps until overfitting can further improve
the performance of SCOTI, but it is important to note that



Model / Dataset
BLEU (B)

METEOR ROUGE-L CIDEr
B-1 B-2 B-3 B-4

SCOTI / MICD 0.547 0.482 0.431 0.388 0.309 0.606 3.939

Xu et al. / Flickr8k 0.670 0.448 0.299 0.195 0.189 - -

Xu et al. / Flickr30k 0.667 0.434 0.288 0.191 0.185 - -

Xu et al. / COCO 0.707 0.492 0.344 0.243 0.239 - -

TABLE I: Evaluation of the SCOTI model trained on MICD with respect to BLEU-1, -2, -3, -4, METEOR, ROUGE-L and
CIDEr scores, in comparison to those reported by Xu et al. [30] on Flickr8k, Flickr30k and MS COCO datasets.

(a) Prioritized Downlink Tasks Page.

(b) Result Notification Page.

Fig. 6: User interface of the onboard image prioritization and
data downlink simulator.

the amount and variety of training data can also affect the
model performance significantly. Compared to merely over a
thousand annotated images in MICD, most public datasets such
as Flickr8k, Flickr30k and MS COCO have more than tens of
thousands of annotated image-caption data. It is anticipated
to see better performance of the SCOTI network after more
annotated planetary image-caption data become available.

We also present in figure 9 some concrete image captioning
results generated by the SCOTI model, showing that our model
is capable of captioning images in various conditions including
both greyscale and colored ones, taken from the planet Mars
with a rich set of landscape features and objects in them.
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Fig. 7: Learning curves of SCOTI network on MICD train-
ing dataset throughout the 3500 training steps (100 training
epochs). The highlighted curves are smoothed by averaging 10
nearby sample points from the actual learning curves shown
on the background.

B. Onboard Image Prioritization and Downlink Simulation

Integration of the proposed system, including the SCOTI
network and the image prioritization pipeline, to a planetary
rover or any other onboard system is nontrivial and requires
much further research, optimization and validation. In this
paper, we only explore the proof-of-concept level potential
of leveraging machine learning to facilitate future missions
in planetary exploration. To that end, we build a simulation
system to simulate the onboard image prioritization and data
downlink processes.

The simulation system consists of a simulated onboard
server and a simulated ground-based server. A trained SCOTI
network model and an image data prioritization pipeline are
deployed to the simulated onboard server, which simulates
a planetary rover or any other onboard device. A downlink
task commander and an image data collector are implemented
on the simulated ground-based server. A user can access
the ground-based server through its user interface, as shown
in figure 6, to submit a new prioritized data downlink task
request, check task status and view finished tasks.

We load the unlabelled images from MICD to the simulated
onboard server as the images captured by the onboard device.
Figure 10 shows the first 16 images downlinked after onboard
image prioritization in three different prioritized downlink
task simulations. In the above experiment, we use the BLEU
weights {wn}4n=1 = {0.8, 0.15, 0.045, 0.005} in image pri-
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Fig. 8: BLEU-1, -2, -3, -4, METEOR, ROUGE-L, and CIDEr scores on the MICD validation dataset along 3500 training steps
(100 training epochs).

"sedimentary bedrock overlying
light toned bedrock and regolith"

"rover arm over fractured
sedimentary bedrock"

"sedimentary bedrock with planar
and crossbedded layers and veins"

"crossbedded bedrock outcrops
with sand"

"close view of a conglomerate
rock"

"selfie of the rover on regolith and
bedrock"

"the view of an outcrop surrounded
by sand dunes"

"dark sand dune field in front of
layered strata"

Fig. 9: Some captioning results of unlabelled images from MICD.

oritization, which is a set of hyperparameters we found to
perform reasonably well in preliminary experiment.

C. Local Image Search through Text Descriptions

Local image search is essentially equivalent to onboard im-
age prioritization using the same text similarity metric to return
the images with the most similar auto-generated captions to
the text description inputs from users. The onboard image
prioritization and downlink test from the previous section
directly reflects the capability of our proposed method on local
image search. Furthermore, a beta version of text-based local
image search tool was also integrated onto NASA PDS for
public test [20].

VIII. CONCLUSION AND DISCUSSION

We propose an approach that generalizes the tasks of both
onboard image prioritization for data downlink and local image
search for planetary image data servers into the problem of
image captioning and text similarity evaluation. Though it
is still a proof-of-concept level system, SCOTI demonstrates
its potential in facilitating data transmission efficiency from
planetary rovers to ground-based data system by prioritizing
the image data with highest scientific values according to
requests from scientist through text-based instructions. Such
an approach avoids the need for scientists to have a deep
understanding of the in-flight software engineering details in
order to come up with a set of unintuitive feature vectors
in order to instruct what data to prioritize for downlink.
Furthermore, the similar essence behind image search and



(a) "sedimentary bedrock with veins" (b) "float rocks on regolith" (c) "cliff"

Fig. 10: Simulated prioritized downlink results given user (scientist) inputs.

image prioritization allows us to naturally apply the same
image captioning and text similarity based data prioritization
mechanism to local image search. And a beta version of the
local image search tool was deployed to NASA’s PDS being
available for the public [20]. With the data pipeline and the
OpenAnnotator tool we developed, the number of annotated
images in the Martian Image Caption Dataset continues to
grow, and hence the performance of the SCOTI network and
the overall system can keep improving.

Though in this paper we mainly focus on terrain images
captured by Martian rovers, but it does not preclude the
applications of the SCOTI system in any other planetary
and astronomical context. In fact, the same framework as
proposed can be applied on different kinds of visual data
captured by any type of space device besides planetary rovers,
simply by retraining SCOTI on the corresponding data. One
typical example of such an extended application is images
captured by satellites, which can be an interesting future work.
And as aforementioned, we focus this work on the proof-
of-concept level validation of leveraging machine learning,
more specifically image captioning, on planetary exploration,
further optimization, such as its implementation on a High
Performance Spaceflight Computing (HPSC) platform, and
hardware-in-the-loop validation will be required in order to
actually deploy the SCOTI system onto a planetary rover in
any future flight mission. And these will be our following work
to carry out.
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TABLE II: Features identified from the MICD along with occurrence frequency.

Category Features (Frequency)

geologic regolith (596), bedrock (558), sedimentary (364), float rocks (311), veins (189), mountains (172), layers (169), sand dunes (158),
layered (144), crossbedded (92), outcrop (91), rock (89), mudstone (72), sand (70), planar (62), clasts (52), fractures (50), laminated
(40), alteration halos (38), surface (30), nodules (30), sandstone (23), nodular (23), laminations (19), strata (11), mesa (10), sand
ripples (10), coarse (10), buttes (9), fractured (9), conglomerate (8), knobby (8), crosscutting (7), pits (6), eolian (6), mounds (5),
grains (5), dust (4), concretions (4), cliff (4), ridged (4), ridges (3), conglomerate rocks (3), circular depression (3), pitted (3),
gravelly (3), vesicles (2), meteorite (2), swale (2), bleached zone (2), crystal molds (2), broken rock fragments (2), smooth (2),
eroded (2), grained (2), slope (1), pebbles (1), tilted blocks (1), rock fragment (1), sand particles (1), flat-lying (1), polygonal (1),
crisscrossing (1)

non-geologic rover (291), rover tracks (111), drill holes (22), blast marks (14), brushed (11), rover shadow (10), rover arm (8), dusty (7), scoop
marks (5), sun (5), rover wheels (3), landscape (2), sampling scoop (2), penny (1), blasted (1), for scale (1)

colors dark (173), light (74), white (6), gray (4), bright (2), blue-black (1), solver (1), red (1), black (1)

relations and (924), with (438), on (371), facing (247), in background (102), imprinting (73), in (72), in foreground (70), of (67), surrounded
by (60), close (59), on top of (40), in front of (20), cut through by (20), at the top (18), at the bottom (18), in the middle (18),
over (15), revealing (14), covered by (12), to the left (11), to the right (9), lying (8), contact between (8), capped by (6), composed
of (4), through (3), at the base of (3), be (2), around (2), intersecting (2), next to (2), filled with (1), between (1), embedded in
(1), on the top-right (1), on the bottom-right (1)

APPENDIX A
FEATURES IDENTIFIED FROM MICD

We count the number of occurrence of different features
mentioned in the captions from MICD. The table II of iden-
tified features gives the features identified in those captions
along with their occurrence frequency.

APPENDIX B
LONG SHORT-TERM MEMORIES

Long short-term memory (LSTM) distinguishes itself from
other recurrent neural network (RNN) architectures by adding
the forget gate mechanism [12, 9]. It has been shown to
effectively prevent the vanishing or exploding problem of
backpropagated errors, and applied to different natural lan-
guage processing (NLP) tasks with great success [7, 24].

Fig. 11: An illustration of the LSTM unit at stage t.

An LSTM unit, as shown in figure 11, has three gates
controlling the inputs into the unit at any stage 1 ≤ t ≤ K,
where K is the number of stages rolled out. The forget gate ft
controls the amount of information to ”forget” (more exactly,
remains) from the previous stage. Similarly, the input gate it
and the output gate ot respectively control the portion external

information input into the unit and the portion output from the
unit at the current stage.

ft = σ(Wfxt + Ufyt−1 + bf )

it = σ(Wixt + Uiyt−1 + bi)

ot = σ(Woxt + Uoyt−1 + bo)

These gates consider both the current stage input xt and
the output yt−1 from the previous stage, and use a sigmoid
function σ to enforce their range within (0, 1) to achieve the
information selection purpose. After the control values of the
gates are computed, the memory value ct and the output yt
of the LSTM unit at stage t are derived following the below
equations.

ct = ft � ct−1 + it � tanh(Wcxt + Ucyt−1 + bc)

yt = ot � tanh(ct)

The memory value ct at the current stage is computed in
accord to both the memory value ct−1 from the previous stage
gated by the forget gate ft and the input value considering both
the current stage external input xt and the output yt−1 from
the previous stage gated by the input gate it. The output yt
is simply the memory value enforced between (−1, 1) by a
hyperbolic tangent function and gated by the output gate ot.
One thing to note is that at each stage t ≥ 1 the LSTM unit
requires an external inputs xt (which is given), the memory
value ct−1 and the output yt−1 from the previous stage, so
an initial memory value c0 and an initial output value y0 are
required. These two values are set to c0 = 0 and y0 = 0 in
usual.

The training process of an LSTM becomes straightforward
after rolling out all the stages. An LSTM can be considered
as a network with multiple LSTM units stacked along the
stage horizon sharing the same set of parameters θLSTM =
(Wf , bf ,Wi, bi,Wo, bo,Wc, bc). To train such a network, stan-
dard gradient descent methods such as Adam [14] can be ap-
plied directly given the external inputs {xm1 , xm2 , · · · , xmK}Mm=1

and target outputs {ym1 , ym2 , · · · , ymK}Mm=1 from a training
dataset, where M is the number of samples.
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