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Abstract— To advance robotic science it is important to per- to use pairwise registration to determine the exact transfo
form experiments that can be replicated by other researchesto  mation of the robot.
compare different methods. However, these comparisons ten Pairwise scan registration is the process of aligning two

to be biased, since re-implementations of reference methsd - . .
often lack thoroughness and do not include the hands-on expe CVErapping scans based on the shapes of their overlapping

rience obtained during the original development process. fiis ~ S€ctions, given an estimate of the relative transformaton
paper presents a thorough comparison of 3D scan registratio  pose) needed to match one with the other. When the scans are

algorithms based on a 3D mapping field experiment, carried properly aligned, they are said to be in registration. Fuitigy
out by two research groups that are leading in the field of 3D e nomenclature of Besl and McKay [2], the scan that serves

robotic mapping. The iterative closest points algorithm (ICP) - .
is compared to the normal distributions transform (NDT). We as the reference is called thedel and the scan that is moved

also present an improved version of NDT with a substantially into alignment with the model is called tiuata scan.
larger valley of convergence than previously published vesions. The algorithms investigated here are local optimisation

algorithms, which means that they only converge to the
correct pose if given an initial estimate close enough to the
|. INTRODUCTION correct pose. Typically, robot odometry is used to suppdy th

Experimental methodologies for robotic mapping havdhitial estimate, _but in many cases, anq especially in. mines
recently received a lot of attention in the community: Fyst ©f When traversing other uneven terrain, the pose given by

scientists have started to define rules for experimentstfi. ©dometry may be too far from the right solution for pair-
important to follow certain guidelines so that experimeares  WIS€ registration to succeed. Therefore we have specificall

replicable and show all relevant characteristics of thegav Nvestigated how wide the valley of convergence is for mine
tigated system. Secondly, research in mapping is fosteyed fyinnel data using different registration algorithms; tigt
open source projects such Radish: The Robotics Data Set how large a range of poses that Iegds to good reg|st_rat|on.
Repository [8] and OpenSLAM [14]. These sites offer some've hav’e also _compared the execution speed by running the
interesting algorithms but currently cover only 2D mappinq?‘”thors best implementations on the same hardware. This
methods. Thirdly, comparing robotic systems in competitio 1€2dS 10 an unbiased comparison.

like RoboCup [6], ELROB [7] or the Grand Challenge [5] I

is increasing. These kinds of competitions allow the level o ) ) ) ) )
system integration and the engineering skills of a certain VW& have investigated two algorithms for matching pairs

team to be ranked, but it is not possible to measure tfd independently acquired 3D scans: ICP [2], [4], [11] and
performance of a subsystem or a single algorithm. As aiPT [3], [10]. ICP is the de facto standard 3D registration
attempt to provide such a detailed subsystem analysis, tg0rithm used in the robotics community, and NDT has
paper presents a thorough comparison of 3D scan registratigPPeared to be a compelling alternative in previous com-
algorithms based on a 3D mapping field experiment in thearisons [10]. Our groups have long experience working
Kvarntorp mine outside obrebro in Sweden. with .the two algor|thm§ qnder review, Wh_lch is why we can
Automated mapping and localisation for underground minconfidently say that this is a fair comparison. -
ing vehicles is a current goal of the mining industry [10], VVe are interested in full 3D metric mapping with six
[12]. When constructing a metric map from sequential laséf€9rees of freedom. Other previous work on metric mine
scans, it is necessary to know how the robot has mov&2PS [15] has used semi-3D mapping with rigidly mounted

between scans. Odometry or inertial sensors typically drifD laser scanners, assuming that one or more rotation angles

wildly even over short distances, so in general it is neggssaSUCh as the roll angle) are static. _
Global registration algorithms, which do not require an
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scans (see [2], [4]). In each iteration, the algorithm dslec
the closest points as correspondences and calculates
transformation R, t) for minimising the equation

N,, Ng

ER,t)=> > wi;ljm; — (Rd; + )|,

i=1 j=1
whereN,,, and N, are the number of points in the model se
M and data seD, respectively, anay; ; are the weights for
a point match. The weights are assigned as follaws: = 1,
if m; is the closest point td; within a close limit,w; ; =0
otherwise.

Fig. 1. lllustration of applying NDT to the model scan in da&t A, with
B. NDT (right) and without (left) trilinear interpolation. Denseegions represent

C larger score values. (The dark grid pattern does not reprasealler score
The normal distributions transform (NDT) uses anothéyaiues, but only shows the borders of the underlying cells.)

representation of the model scan (see [3], [10]). Instead of
using the individual points of the model point cloud, it ipre
resented by a combination of normal distributions, degugib I1l. TECHNICAL APPROACH

the probability of finding part of the surface at any point 4 compare the performance of ICP and NDT with respect
in space. The normal distributions give a piecewise smootl mine mapping, we performed three experiments: firstly we
representation of the model point cloud, with continuowst fir thoroughly investigated the valley of convergence for one
and second order derivatives. Using this representatios), i i of scans, secondly we examined the success rate using
possible to apply standard numerical optimisation methog§|arger data set using initial start poses from robot odomet
for registration. and thirdly we evaluated the cumulative registration aacyr

C. NDT with trilinear interpolation for the larger data set.

NDT has an inherent limitation in the fact that space i\ \ajlley of convergence
subdivided into regular cells. The discretisation artsabat
come from the subdivision process, leading to discontiesiit
in the surface representations at cell edges, can sometiene
problematic. It is often the case that the probability distr

In order to investigate the valley of convergence, we
selected one scan pair and determined a reference pose.
SThe registration algorithms were run from a number of start

tion function (PDF) for a cell is substantially non-zero eve poses, each of them offset from the reference pose, both

at points outside the cell's borders. In the original 2D ND'IWItr1 respect to translation _and rotation. We the_n counted
. . . o g which start poses resulted in an end pose sufficiently close
implementation [3], the discretisation effects were miisieal

by using four overlapping 2D cell grids. A similar approachto the reference pose. We limited the offsets of the initial

was implemented here, using the normal distributions frorgc;sneees_;;]msatce:n;cir;c?;?tg);; Sgdniroat'nz:?;g?zrlr':r:rheeehr%z\ts%r;ls'
the eight neighbouring cells at each evaluation of the sco - : v '

function. The weight of the contribution from each cell is Irstly, in a typl_cal_ml_ne mapping scenario, the largest part
: - . . . of the error will lie in the horizontal plane; secondly, it
determined by trilinear interpolation. In other wordsxifis

pointx transformed by the current transformation parameterr duces the numbfer of trials that must be run (we trle_d
41 start poses, using the same offsets on all transformatio

p, the score function from [10], parameters would make 250047 poses); thirdly, it makes the

T — . . . .
s(p) = 1 exp <— (x' —q)"CT (¥ ~ q)) results easier to visualise. No constraints were addedeo th
c 2 ’ registration algorithms; they still operate with six dezgef
is replaced with freedom.

13 (' — ) TC (K — ) .Unfortunatel_y, ground_ truth data are not available in
s(p) = —EZw(x',qb)exp <— 2" )7 this type of field experiment. The reference poses were
b=1 therefore determined manually, by performing a number of
where {q,} and {C,} are the means and covariances ofegistrations and choosing the mean of the poses that led
the PDFs of the eight cells which are closestxQ and to visually correct results. Because of the low accuracy of
w(x’,qp) Is a trilinear interpolation weight function. This this referencing, all registrations resulting in a posehimita
has a smoothing effect similar to the approach of Biber anspecified translation and rotation distance from the refeze
Straer [3] without the need to compute more PDFs (sqmse were regarded as “successful”. For scans with “lock
Fig. 1). Because up to eight PDFs have to be evaluated fand key” features, such as walls in different directionss it
each point (less then eight if the model surface does netsier to determine a rather exact reference pose. In thee min
occupy all of the surrounding cells), the algorithm takes ufunnel application, however, many scans are from relativel
to eight times as long as NDT without trilinear interpolatio featureless tunnels. For such scans it is more difficult t fin
In our experiments, the execution time increased by arourtde best pose parameters, especially the translation #heng
450%. direction of the tunnel. We chose two translation thressicid




Fig. 2. One of the tunnels in the Kvarntorp mine. Fig. 3. The Kurt3D robot scanning underground.

stricter one (0.20 m), and a weaker one (1.0 m). The rotation The data were collected by Kurt3D (cf. Fig. 3) in the
threshold used was°5 Poses within the stricter translation Kvarntorp mine, south ofOrebro in Sweden. This mine
threshold are difficult to tell apart for a human observeis Nno longer in production, but was once used to mine
Poses with larger translation errors are clearly less ekatt limestone. Fig. 2 shows a typical scene from one of the
may still be considered good enough for some application8!nnels. The mine consists of around 40 km of tunnels, all
For navigation, 1 m accuracy should be sufficient as long 48 approximately one plane.

relative positioning is more accurate. The following data sets were used for the comparisons:
Data set A: Two partly overlapping scans from a slightly
B. Manual intervention curved tunnel section. Subsets of the original scans were

In addition to this scan-to-scan evaluation we execute¢Sed, with 8000 samples drawn from each scan so that the
both algorithms with incremental pairwise scan matchingeSulting point clouds had relatively even densities (acbu
on all scans of the data set; i.e., each scan was registerddf of the points were used). The scans are shown in Fig. 4.
against the previous scan. Because of the sometimes largdata set B: A sequence of 55 scans, going around a loop,
odometry errors that come from driving a small robot oveWith the last two scans partly overlapping the first scan. See
loose rocks, the initial pose estimate had to be manuarlgg- 5. Again, each scan was subsampled to 8000 points.
altered for some scan pairs in order to reach a usable fifdf@ Set A is scans number 32 and 33 from this set. The
pose estimate. As another measurement of robustness, i@l distance travelled around the loop is about 150 m.
counted the number of occasions where the odometry had to! he data are available online for download [13].
be corrected for a sequence of scans. The correct poses in {gi Experiments

scenario were also selected manually from visual inspectio The results from the pairwise registration experiments are
marking as incorrect only those attempts that resulted inresenteduin lots Wher% tlheltranslgalltion I()f“fsei(sparle layed o
gross registration error. P P e

along ther andy axes of the plot and the rotation offsets are
C. Registration accuracy shown as points around a circle. Each group of points shows

. . the results from nine start poses with the same translation
During the experiment, we closed a loop, and therefore we

: . ut different rotations. (See Fig. 6 for clarification.)
can measure the transformation that is necessary to mach . . i
. . . . To quantify the registration accuracy, a reference pose for
first scan against the last one when returning to the startin

oint. By doing so. we measured the accumulated error ﬁﬁe last scan of data set B was determined by registering it
boint. By 9 S0, ' {0 the first scan. The difference between the reference pose

the accumulated error is small, the final scan should align : o X :
. . and the resulting pose after pairwise registration of aisc

well with the first scan. . ,
of the data set was used as a measure of the algorithms

IV. EXPERIMENTS AND RESULTS accuracy. The initial pose estimate for each scan was taken
from odometry.

A. Data

The 3D range data were acquired by a tiltable 3D laser Parameter§

scanner based on a SICK LMS 200. A small servo motor The following parameters were used:

has been attached to the SICK to perform a controlled pitch NDT:

motion. The resolution of a 3D scan is 364 226 data «» lIterative NDT with cell sizes 2 m, 1 m, and 0.5 m. This

points covering the area of about P8& 116.3 in front means that for each registration attempt, NDT was run

of the robot. 3D scanning did proceed in a drive-scan-and- three times with successively smaller cell sizes, with the

go fashion. end pose from each run being used as the start pose for



Fig. 4. The two scans of data set A at the reference pose, seen f
above. The data scan is light (yellow) and the model scanris @ad). In
this figure, thex axis points to the right, thg axis points to the top of the
page, and the axis points towards the viewer.

Fig. 5. Data set B, seen from above after loop closure.

the next one. The first iterations roughly align scan pairs
with large initial pose error, and the last iterations refine
the result because the surface model is more precise.

o Linked cells (unoccupied cells store a pointer to the
closest occupied cell) and infinite outer bounds (points
that fall outside the cell grid during registration are
matched to the closest occupied cell).

« Rotations parametrised as Euler angles with small-angle
approximations. In other words, rotations are repre-
sented as triplef(z, y, z) meaning three consecutive

rotations around the main coordinate axis. This givegig. 6. Legend to the plots in Fig. 7-8. Each sub-plot reprissa set of
initial poses with the same translation offset and varyiotation offsets.

a S|x-d!men3|0nal optimisation .prOblem (three fromGreen circles represent successful registrations usiagstitict translation
translation and three from rotation). Using the smallthreshold, solid yellow dots represent successes usingptise threshold,

ang|e approximationm'n(x) ~ z and cos(a:) ~ 1 and red crosses represent failures. For each translatfeat,oposes with
. h wh h . . h N initial rotation error ranging from -80to +80° in 20° increments were
IS accurate enough when the rotation in eac eWtot@sted. The grey dot marks the translation offset.

iteration is small, and slightly decreases execution time.
o Optimisation using Newton's method with line search.

Max step siz€||Ap|| = 0.2, wherep is the translation jnitial pose was translated backwards (in the direction).
and rotation parameters of the current pose, measuredifthough the rotation of the pose estimate after regisirati
metres and radians. Max 100 iterations (but the iteratiogag generally correct, the algorithm stopped prematurely i
limit was never reached). Convergence threshold: st§fese cases at a pose with maximum overlap between the
size||Ap|| <107 or score decremenks < 0. two scans. NDT overcame this local optimum in more cases.
ICP: However, for the cases where NDT did fail, it was sometimes
« For closest point computation we used standarttree the case that both the translation and rotation of the finsepo
search, employing a bucket size of 10 points per buckexere wrong. In other words, NDT succeeded more often, but
« Distance threshold for point pairs 0.5 m. Data point$or the cases where it failed, the result was sometimes worse
whose current nearest neighbour in the model scan tgan for ICP. A registration result where the rotation isIwel
beyond the distance threshold are treated as outliea§gned but the translation is off along the tunnel’s diiact
and discarded. Furthermore, this threshold takes cai® often more acceptable than a result with large rotation
of partially overlapping scans. In other words, thiserror. If the rotation error only is used as the criterion for
threshold aims to minimise the tendency to drag theuccessful registration, the results look different, as loa

two scans to a maximally overlapping pose. seen in Fig. 8.
« Convergence threshold: step sifAE(R, t)|| < 1076, The execution times are shown in Fig. 9. The reported
times include all necessary preprocessing (includingticnea
D. Results of the normal distributions for NDT, and /ad-tree for ICP)

1) Valley of convergence: The sensitivity to error in the and all three iterations for NDT, but exclude the time needed
initial pose estimate was tested using data set A. Fig. 7 shof@r loading the scan data.
the initial poses for which the algorithms converged to a 2) Manual intervention: When registering data set B, the
good solution. ICP failed for most of the attempts where thmitial pose of one scan had to be adjusted both for ICP
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Fig. 7. Results from data set A. Success rate for loose/dtaoslation  Fig. 8. Registration results from data set A, judging by tiotaerror only
threshold: 30%/13% for ICP, 77%/37% for NDT, 95%/95% fotiigar  (disregarding the translation threshold). Success r&% fr ICP, 89% for
NDT. NDT, 95% for trilinear NDT.

and standard NDT. For ICP, one scan (number 33) could not3) Registration accuracy: The registration accuracy was
be aligned without adjusting the odometry. For NDT, scameasured by looking at the accumulated pose error at the
number 23 had to be altered. NDT with trilinear interpolatio end of data set B. It should be noted that judging registra-
successfully registered all scans from their original posion accuracy in this way can only give a rather uncertain
estimates. indication of registration quality due to the fact that esro
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Fig. 9. Execution times for data set A. The light bar shows rtrezlian
execution time from the 441 runs, the "whiskers” extend te #xtreme
values, and the edges of the box show the first and third tpiarti

at different points in the loop can cancel out so that the final §
error is small even if there are inaccuracies for some scarg
pairs.

For NDT, the accumulated translation error was 2.26 m
(using the altered initial pose for scan 23). The transtatio
error vector wag1.12, —0.02, —1.97], which means that the
accumulated vertical error was almost 2 m.

For NDT with trilinear interpolation, the accumulated
error was slightly larger in this case: 3.99 m (using the
original pose estimates). The translation error vector was
[3.22, —0.56, —2.30]. Most of the the horizontal translation
error was because the more feature-less tunnel segmergts we
somewhat “shortened”.

For ICP an accumulated translation error of 2.97 m can
be reported (using the altered pose estimate for scan 33). [

Close-ups of the registration results are shown in Fig. 10.

V. CONCLUSIONS

We have evaluated the performance of ICP and NDT for
3D mapping, and presented an improved version of NDT.

(a) ICP

(b) NDT

(c) NDT with trilinear interpolation

Fig. 10. The accumulated error after registering all of tbens in data set
B. The red lines connect features that should line up if threzee no error.

In our experiments, NDT was shown to converge from &he left column shows a top view, and the right column showsrizéntal

larger range of initial pose estimates than ICP, and to perfo view.

faster. However, the poses from which NDT converged were
not as predictable as for ICP. In several cases, a scan would
be successfully registered from a pose estimate with larg
initial error but fail from a pose estimate with less error. [7]
Also, in some cases where NDT failed, the resulting pose wak$]
worse than the result of ICP, because the rotation error wal

larger. Using NDT with trilinear interpolation substatiia (1]
increased the success rate of NDT, at the expense of longer
execution times. [11]
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