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Abstract— To advance robotic science it is important to per-
form experiments that can be replicated by other researchers to
compare different methods. However, these comparisons tend
to be biased, since re-implementations of reference methods
often lack thoroughness and do not include the hands-on expe-
rience obtained during the original development process. This
paper presents a thorough comparison of 3D scan registration
algorithms based on a 3D mapping field experiment, carried
out by two research groups that are leading in the field of 3D
robotic mapping. The iterative closest points algorithm (ICP)
is compared to the normal distributions transform (NDT). We
also present an improved version of NDT with a substantially
larger valley of convergence than previously published versions.

I. I NTRODUCTION

Experimental methodologies for robotic mapping have
recently received a lot of attention in the community: Firstly,
scientists have started to define rules for experiments [1].It is
important to follow certain guidelines so that experimentsare
replicable and show all relevant characteristics of the inves-
tigated system. Secondly, research in mapping is fostered by
open source projects such asRadish: The Robotics Data Set
Repository [8] and OpenSLAM [14]. These sites offer some
interesting algorithms but currently cover only 2D mapping
methods. Thirdly, comparing robotic systems in competitions
like RoboCup [6], ELROB [7] or the Grand Challenge [5]
is increasing. These kinds of competitions allow the level of
system integration and the engineering skills of a certain
team to be ranked, but it is not possible to measure the
performance of a subsystem or a single algorithm. As an
attempt to provide such a detailed subsystem analysis, this
paper presents a thorough comparison of 3D scan registration
algorithms based on a 3D mapping field experiment in the
Kvarntorp mine outside of̈Orebro in Sweden.

Automated mapping and localisation for underground min-
ing vehicles is a current goal of the mining industry [10],
[12]. When constructing a metric map from sequential laser
scans, it is necessary to know how the robot has moved
between scans. Odometry or inertial sensors typically drift
wildly even over short distances, so in general it is necessary
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to use pairwise registration to determine the exact transfor-
mation of the robot.

Pairwise scan registration is the process of aligning two
overlapping scans based on the shapes of their overlapping
sections, given an estimate of the relative transformation(or
pose) needed to match one with the other. When the scans are
properly aligned, they are said to be in registration. Following
the nomenclature of Besl and McKay [2], the scan that serves
as the reference is called themodel and the scan that is moved
into alignment with the model is called thedata scan.

The algorithms investigated here are local optimisation
algorithms, which means that they only converge to the
correct pose if given an initial estimate close enough to the
correct pose. Typically, robot odometry is used to supply the
initial estimate, but in many cases, and especially in mines
or when traversing other uneven terrain, the pose given by
odometry may be too far from the right solution for pair-
wise registration to succeed. Therefore we have specifically
investigated how wide the valley of convergence is for mine
tunnel data using different registration algorithms; thatis,
how large a range of poses that leads to good registration.
We have also compared the execution speed by running the
authors’ best implementations on the same hardware. This
leads to an unbiased comparison.

II. RELATED WORK

We have investigated two algorithms for matching pairs
of independently acquired 3D scans: ICP [2], [4], [11] and
NDT [3], [10]. ICP is the de facto standard 3D registration
algorithm used in the robotics community, and NDT has
appeared to be a compelling alternative in previous com-
parisons [10]. Our groups have long experience working
with the two algorithms under review, which is why we can
confidently say that this is a fair comparison.

We are interested in full 3D metric mapping with six
degrees of freedom. Other previous work on metric mine
maps [15] has used semi-3D mapping with rigidly mounted
2D laser scanners, assuming that one or more rotation angles
(such as the roll angle) are static.

Global registration algorithms, which do not require an
initial pose estimate, also exist, and have been used in mine
mapping scenarios [9]. However, as long as some initial
estimate from odometry is available, local registration is
much more computationally efficient than global registration.

A. ICP

The iterative corresponding point algorithm (ICP) itera-
tively minimises point-to-point distances between the two



scans (see [2], [4]). In each iteration, the algorithm selects
the closest points as correspondences and calculates the
transformation (R, t) for minimising the equation

E(R, t) =

Nm
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Nd
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wi,j ||mi − (Rdj + t)||
2
,

whereNm andNd are the number of points in the model set
M and data setD, respectively, andwi,j are the weights for
a point match. The weights are assigned as follows:wi,j = 1,
if mi is the closest point todj within a close limit,wi,j = 0
otherwise.

B. NDT

The normal distributions transform (NDT) uses another
representation of the model scan (see [3], [10]). Instead of
using the individual points of the model point cloud, it is rep-
resented by a combination of normal distributions, describing
the probability of finding part of the surface at any point
in space. The normal distributions give a piecewise smooth
representation of the model point cloud, with continuous first
and second order derivatives. Using this representation, it is
possible to apply standard numerical optimisation methods
for registration.

C. NDT with trilinear interpolation

NDT has an inherent limitation in the fact that space is
subdivided into regular cells. The discretisation artifacts that
come from the subdivision process, leading to discontinuities
in the surface representations at cell edges, can sometimesbe
problematic. It is often the case that the probability distribu-
tion function (PDF) for a cell is substantially non-zero even
at points outside the cell’s borders. In the original 2D NDT
implementation [3], the discretisation effects were minimised
by using four overlapping 2D cell grids. A similar approach
was implemented here, using the normal distributions from
the eight neighbouring cells at each evaluation of the score
function. The weight of the contribution from each cell is
determined by trilinear interpolation. In other words, ifx′ is
pointx transformed by the current transformation parameters
p, the score function from [10],
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where {qb} and {Cb} are the means and covariances of
the PDFs of the eight cells which are closest tox′, and
w(x′,qb) is a trilinear interpolation weight function. This
has a smoothing effect similar to the approach of Biber and
Straßer [3] without the need to compute more PDFs (see
Fig. 1). Because up to eight PDFs have to be evaluated for
each point (less then eight if the model surface does not
occupy all of the surrounding cells), the algorithm takes up
to eight times as long as NDT without trilinear interpolation.
In our experiments, the execution time increased by around
450%.

Fig. 1. Illustration of applying NDT to the model scan in dataset A, with
(right) and without (left) trilinear interpolation. Denser regions represent
larger score values. (The dark grid pattern does not represent smaller score
values, but only shows the borders of the underlying cells.)

III. T ECHNICAL APPROACH

To compare the performance of ICP and NDT with respect
to mine mapping, we performed three experiments: firstly we
thoroughly investigated the valley of convergence for one
pair of scans, secondly we examined the success rate using
a larger data set using initial start poses from robot odometry,
and thirdly we evaluated the cumulative registration accuracy
for the larger data set.

A. Valley of convergence

In order to investigate the valley of convergence, we
selected one scan pair and determined a reference pose.
The registration algorithms were run from a number of start
poses, each of them offset from the reference pose, both
with respect to translation and rotation. We then counted
which start poses resulted in an end pose sufficiently close
to the reference pose. We limited the offsets of the initial
pose estimates to rotations and translations in the horizontal
plane. This constraint can be motivated for three reasons:
firstly, in a typical mine mapping scenario, the largest part
of the error will lie in the horizontal plane; secondly, it
reduces the number of trials that must be run (we tried
441 start poses, using the same offsets on all transformation
parameters would make 250 047 poses); thirdly, it makes the
results easier to visualise. No constraints were added to the
registration algorithms; they still operate with six degrees of
freedom.

Unfortunately, ground truth data are not available in
this type of field experiment. The reference poses were
therefore determined manually, by performing a number of
registrations and choosing the mean of the poses that led
to visually correct results. Because of the low accuracy of
this referencing, all registrations resulting in a pose within a
specified translation and rotation distance from the reference
pose were regarded as “successful”. For scans with “lock
and key” features, such as walls in different directions, itis
easier to determine a rather exact reference pose. In the mine
tunnel application, however, many scans are from relatively
featureless tunnels. For such scans it is more difficult to find
the best pose parameters, especially the translation alongthe
direction of the tunnel. We chose two translation thresholds: a



Fig. 2. One of the tunnels in the Kvarntorp mine.

stricter one (0.20 m), and a weaker one (1.0 m). The rotation
threshold used was 5◦. Poses within the stricter translation
threshold are difficult to tell apart for a human observer.
Poses with larger translation errors are clearly less exact, but
may still be considered good enough for some applications.
For navigation, 1 m accuracy should be sufficient as long as
relative positioning is more accurate.

B. Manual intervention

In addition to this scan-to-scan evaluation we executed
both algorithms with incremental pairwise scan matching
on all scans of the data set; i.e., each scan was registered
against the previous scan. Because of the sometimes large
odometry errors that come from driving a small robot over
loose rocks, the initial pose estimate had to be manually
altered for some scan pairs in order to reach a usable final
pose estimate. As another measurement of robustness, we
counted the number of occasions where the odometry had to
be corrected for a sequence of scans. The correct poses in this
scenario were also selected manually from visual inspection,
marking as incorrect only those attempts that resulted in
gross registration error.

C. Registration accuracy

During the experiment, we closed a loop, and therefore we
can measure the transformation that is necessary to match the
first scan against the last one when returning to the starting
point. By doing so, we measured the accumulated error. If
the accumulated error is small, the final scan should align
well with the first scan.

IV. EXPERIMENTS AND RESULTS

A. Data

The 3D range data were acquired by a tiltable 3D laser
scanner based on a SICK LMS 200. A small servo motor
has been attached to the SICK to perform a controlled pitch
motion. The resolution of a 3D scan is 361× 226 data
points covering the area of about 180◦ × 116.3◦ in front
of the robot. 3D scanning did proceed in a drive-scan-and-
go fashion.

Fig. 3. The Kurt3D robot scanning underground.

The data were collected by Kurt3D (cf. Fig. 3) in the
Kvarntorp mine, south ofÖrebro in Sweden. This mine
is no longer in production, but was once used to mine
limestone. Fig. 2 shows a typical scene from one of the
tunnels. The mine consists of around 40 km of tunnels, all
in approximately one plane.

The following data sets were used for the comparisons:
Data set A: Two partly overlapping scans from a slightly

curved tunnel section. Subsets of the original scans were
used, with 8000 samples drawn from each scan so that the
resulting point clouds had relatively even densities (around
10% of the points were used). The scans are shown in Fig. 4.

Data set B: A sequence of 55 scans, going around a loop,
with the last two scans partly overlapping the first scan. See
Fig. 5. Again, each scan was subsampled to 8000 points.
Data set A is scans number 32 and 33 from this set. The
total distance travelled around the loop is about 150 m.

The data are available online for download [13].

B. Experiments

The results from the pairwise registration experiments are
presented in plots where the translation offsets are layed out
along thex andy axes of the plot and the rotation offsets are
shown as points around a circle. Each group of points shows
the results from nine start poses with the same translation
but different rotations. (See Fig. 6 for clarification.)

To quantify the registration accuracy, a reference pose for
the last scan of data set B was determined by registering it
to the first scan. The difference between the reference pose
and the resulting pose after pairwise registration of all scans
of the data set was used as a measure of the algorithms’
accuracy. The initial pose estimate for each scan was taken
from odometry.

C. Parameters

The following parameters were used:
NDT:

• Iterative NDT with cell sizes 2 m, 1 m, and 0.5 m. This
means that for each registration attempt, NDT was run
three times with successively smaller cell sizes, with the
end pose from each run being used as the start pose for



Fig. 4. The two scans of data set A at the reference pose, seen from
above. The data scan is light (yellow) and the model scan is dark (red). In
this figure, thex axis points to the right, they axis points to the top of the
page, and thez axis points towards the viewer.

the next one. The first iterations roughly align scan pairs
with large initial pose error, and the last iterations refine
the result because the surface model is more precise.

• Linked cells (unoccupied cells store a pointer to the
closest occupied cell) and infinite outer bounds (points
that fall outside the cell grid during registration are
matched to the closest occupied cell).

• Rotations parametrised as Euler angles with small-angle
approximations. In other words, rotations are repre-
sented as triplesR(x, y, z) meaning three consecutive
rotations around the main coordinate axis. This gives
a six-dimensional optimisation problem (three from
translation and three from rotation). Using the small-
angle approximationssin(x) ≈ x and cos(x) ≈ 1
is accurate enough when the rotation in each Newton
iteration is small, and slightly decreases execution time.

• Optimisation using Newton’s method with line search.
Max step size||∆p|| = 0.2, wherep is the translation
and rotation parameters of the current pose, measured in
metres and radians. Max 100 iterations (but the iteration
limit was never reached). Convergence threshold: step
size ||∆p|| < 10−6 or score decrement∆s < 0.

ICP:

• For closest point computation we used standardk-d tree
search, employing a bucket size of 10 points per bucket.

• Distance threshold for point pairs 0.5 m. Data points
whose current nearest neighbour in the model scan is
beyond the distance threshold are treated as outliers
and discarded. Furthermore, this threshold takes care
of partially overlapping scans. In other words, this
threshold aims to minimise the tendency to drag the
two scans to a maximally overlapping pose.

• Convergence threshold: step size||∆E(R, t)|| < 10−6.

D. Results

1) Valley of convergence: The sensitivity to error in the
initial pose estimate was tested using data set A. Fig. 7 shows
the initial poses for which the algorithms converged to a
good solution. ICP failed for most of the attempts where the

Fig. 5. Data set B, seen from above after loop closure.
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Fig. 6. Legend to the plots in Fig. 7–8. Each sub-plot represents a set of
initial poses with the same translation offset and varying rotation offsets.
Green circles represent successful registrations using the strict translation
threshold, solid yellow dots represent successes using theloose threshold,
and red crosses represent failures. For each translation offset, poses with
initial rotation error ranging from -80◦ to +80◦ in 20◦ increments were
tested. The grey dot marks the translation offset.

initial pose was translated backwards (in the−x direction).
Although the rotation of the pose estimate after registration
was generally correct, the algorithm stopped prematurely in
these cases at a pose with maximum overlap between the
two scans. NDT overcame this local optimum in more cases.
However, for the cases where NDT did fail, it was sometimes
the case that both the translation and rotation of the final pose
were wrong. In other words, NDT succeeded more often, but
for the cases where it failed, the result was sometimes worse
than for ICP. A registration result where the rotation is well-
aligned but the translation is off along the tunnel’s direction
is often more acceptable than a result with large rotation
error. If the rotation error only is used as the criterion for
successful registration, the results look different, as can be
seen in Fig. 8.

The execution times are shown in Fig. 9. The reported
times include all necessary preprocessing (including creation
of the normal distributions for NDT, and akd-tree for ICP)
and all three iterations for NDT, but exclude the time needed
for loading the scan data.

2) Manual intervention: When registering data set B, the
initial pose of one scan had to be adjusted both for ICP
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Fig. 7. Results from data set A. Success rate for loose/strict translation
threshold: 30%/13% for ICP, 77%/37% for NDT, 95%/95% for trilinear
NDT.

and standard NDT. For ICP, one scan (number 33) could not
be aligned without adjusting the odometry. For NDT, scan
number 23 had to be altered. NDT with trilinear interpolation
successfully registered all scans from their original pose
estimates.
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Fig. 8. Registration results from data set A, judging by rotation error only
(disregarding the translation threshold). Success rate: 95% for ICP, 89% for
NDT, 95% for trilinear NDT.

3) Registration accuracy: The registration accuracy was
measured by looking at the accumulated pose error at the
end of data set B. It should be noted that judging registra-
tion accuracy in this way can only give a rather uncertain
indication of registration quality due to the fact that errors
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Fig. 9. Execution times for data set A. The light bar shows themedian
execution time from the 441 runs, the ”whiskers” extend to the extreme
values, and the edges of the box show the first and third quartile.

at different points in the loop can cancel out so that the final
error is small even if there are inaccuracies for some scan
pairs.

For NDT, the accumulated translation error was 2.26 m
(using the altered initial pose for scan 23). The translation
error vector was[1.12,−0.02,−1.97], which means that the
accumulated vertical error was almost 2 m.

For NDT with trilinear interpolation, the accumulated
error was slightly larger in this case: 3.99 m (using the
original pose estimates). The translation error vector was
[3.22,−0.56,−2.30]. Most of the the horizontal translation
error was because the more feature-less tunnel segments were
somewhat “shortened”.

For ICP an accumulated translation error of 2.97 m can
be reported (using the altered pose estimate for scan 33).

Close-ups of the registration results are shown in Fig. 10.

V. CONCLUSIONS

We have evaluated the performance of ICP and NDT for
3D mapping, and presented an improved version of NDT.

In our experiments, NDT was shown to converge from a
larger range of initial pose estimates than ICP, and to perform
faster. However, the poses from which NDT converged were
not as predictable as for ICP. In several cases, a scan would
be successfully registered from a pose estimate with large
initial error but fail from a pose estimate with less error.
Also, in some cases where NDT failed, the resulting pose was
worse than the result of ICP, because the rotation error was
larger. Using NDT with trilinear interpolation substantially
increased the success rate of NDT, at the expense of longer
execution times.
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