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Abstract

Deciding how to act in partially observable environmentaaas an active area of research.
Identifying good sequences of decisions is particularbllemging when good control performance
requires planning multiple steps into the future in domawith many states. Towards addressing
this challenge, we present an online, forward-search fgorcalled the Posterior Belief Distri-
bution (PBD). PBD leverages a novel method for calculatirgposterior distribution over beliefs
that result after a sequence of actions is taken, given thef sbservation sequences that could be
received during this process. This method allows us to efity evaluate the expected reward of a
sequence of primitive actions, which we refer to as mactmas. We present a formal analysis of
our approach, and examine its performance on two very langgation experiments: scienti ¢ ex-
ploration and a target monitoring domain. We also demotestrar algorithm being used to control
a real robotic helicopter in a target monitoring experimevitich suggests that our approach has
practical potential for planning in real-world, large pallyy observable domains where a multi-step
lookahead is required to achieve good performance.

1. Introduction

Consider an autonomous helicopter tasked with protecting ships anch@&dsy harbor. At each
time step, the helicopter must know if anything is moving too close to the ships it idiggabut
due to its sensor limits, the helicopter cannot observe the whole harbocet ®he only way to
keep its ships safe is to keep moving continuously throughout the hasspjrg track of all the
other moving agents. The helicopter does well when it senses that abotitdras moved too close
to one of its charges, but false alarms are costly. The helicopter's dentnoust decide how to
move around, what to report and when, in order to maximize its own perfarea

This problem requires decision-making in an uncertain, partially obskerdmain, a com-
mon challenge for any agent operating in a real-world environment. Thepter problem just
described is an example of a general class of problems that are palyidifigult for two reasons.
First, to make a decision, the agent must take into consideration its prefierdtesof the loca-
tion and orientation of each of the targets. All of these quantities will typicallyebévalued. In
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the standard terminology of Markov decision processes (MDPs), thespiate consists of a large
number of continuous variables. Second, to make a decision now, theragstreason about how
its estimate of the state of the world may change many time steps into the future,diffefent
possible helicopter and target actions. Any problem with many variablesnsid=y and a long
time horizon to plan over suffers from the curse of dimensionality and thee@frhistory (Pineau,
Gordon, & Thrun, 2003a). We refer to such problemsaage andlong.

In this paper we present a new planning algorithm for large, long, partakervable MDPs
(POMDPs), such as the target monitoring example. Beyond target monittarg are numerous
other problems, such as scienti ¢ exploration of extreme environments @od@mous manage-
ment of retirement portfolios, which may be posed as large, long POMDPs.

Though there has been substantial progress in POMDP planning oviasthgecade, most
approaches still struggle to scale to large domains described by many statdesgm where each
variable may take on a large or in nite number of potential values. SymboliceBeréPoupart,
2005) was used to nd a good solution to a hand-washing domain with 11 shaitebles, but
each variable took on a relatively small number of values (at most 10 yallrecently online
forward search approaches have been used to achieve encgupagiormance on some large
POMDPs, such as the work by Ross, Chaib-draa and Pineau (2008Bpguet, Tobin and Chaib-
draa (2005). However, the cost of performing a generic forwaacbescales exponentially with the
search horizon. The target monitoring example described above nasdatylarge to be solved by
of ine approaches, but, as we will demonstrate later, also requires alorigon search to achieve
good performance, limiting the effectiveness of standard forwaratsdar long problems.

As an effort towards scaling to large, long, partially observable decisiaking, we intro-
duce the Posterior Belief Distribution (PBD) algorithm. PBD leverages thehn#igt for certain
environments which have speci c structure, the distribution of belief statagh in turn are dis-
tributions over states) that arise from a xed sequence of actions caorbputed ef ciently and
analytically. This distribution over beliefs, posterior belief distributionallows us to scale to large,
long POMDP problems using ef cient forward search with temporally-edéehaction sequences,
which we refer to asnacro-actions PBD selects an action for the current belief by planning over
a restricted policy space de ned by the input macro-action set, and thglame after the selected
action is taken and a new observation is received. Note that this implies thaolibg executed
does not necessarily equal the policy space used for planning, sihcthe rst step of a macro-
action is executed before re-planning is performed. This characterfd8BD is very similar to
receding horizon controllers (RHC) (such as Mayne, Rawlings, RaB¢cé&kaert, 2000; Kuwata
& How, 2004). RHCs consider a nite-horizon policy space when peniog planning, but can
execute over a much longer horizon by repeatedly re-planning.

In this paper we demonstrate that our PBD algorithm achieves good parfce on large, long
POMDP problems which are either outside the scope of prior approaghes, which prior ap-
proaches fail to nd good quality policies. Our experimental results dematestinat PBD performs
well with an attractive computational cost on several large, long simulatiolblgoms, including a
variant of the RcksampPLE POMDP benchmark problem (Smith & Simmons, 2005) and a simu-
lated target monitoring example. We also demonstrate the PBD algorithm onaaddlversion
of the target monitoring problem, where we use a robotic helicopter platfommotator multiple
ground vehicles (Section 6.4). This demonstration suggests that PBDawdisg@ potential for real

1. Unless otherwise speci ed, when we describe a domain as “largetilvbe referring to a domain described by the
values of a number of state variables, where each variable can takargnaman in nite number of values.
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robotic domains. In this paper, the macro-actions are assumed to be prbyidedomain expett
however, to decouple the impact of our speci ¢ choice of macro-actiesalso provide experi-
mental results where we modify alternate approaches (including a stdte-aft planner) to use
macro-actions, and still nd performance advantages for our presenéthods.

The rest of the paper is organized as follows. Section 2 rst providesed background on
planning under uncertainty using forward search. We then introduc®BD algorithm in Sec-
tion 3, and consider a slight variant of PBD that is applicable to a largef sieimains in Section 4.
In Section 5 we provide a formal analysis of the PBD algorithm, and then itidBe® we present
experimental results. We present related work in Section 7 and nallyladaén Section 8.

2. Background: Planning under Uncertainty using Forward Seach

Formally, we assume that our decision-making under state-uncertaintigpraebnsists of the fol-
lowing known components:

S is a set of states. Each st&@ S consists of an assignment of values to each state
variabless|;. The domain of each state variable may be either discrete or continuous.

A is a set of actions (controlg)2 A, which can be either discrete or continuous.
Z is a set of observatiors2 Z , which can be either discrete or continuous.

p(sYs; a) is a transition function (also known as a dynamics model) which encodesahe pr
ability of transitioning to state® after taking actiora from states. We assume the dynamics
satisfy the Markov assumption that the new state is only a function of the immeduaitety
state and action.

p(zjs) is an observation function (also known as a measurement or sensor thatlefcodes
the probability of receiving observatianin states.

by is a distribution over possible initial states, whépés) is the probability that the initial
state iss. This distribution is known as the initial belief state, and is a well-formed distributio
that sums to one across all states.

r(s;a) is a reward (or cost) function that describes the utility the agent rectvdaking
actiona in states. Slightly abusing notatior,(b; 8 is the expected reward for taking action
a given a distribution over current states (belief)

is a discount factor that determines the weights of immediate rewards relatinermvards
that will be received at a later time step.

The statesS are not fully observable. Instead, at every time step, the agent escaivobser-
vation after taking an action. The agent must therefore make decisioed baghe prior history
of observations it has receivezl,;, and actions it has takea; ¢, up to timet. As the world states
are assumed to be Markov, instead of maintaining an ever-expanding fiasbbbservations and

2. In other work we have demonstrated that we can automatically consinad macro-actions for smaller
POMDPs (He, Brunskill, & Roy, 2010b). Integrating these two lines oflwisran interesting area for future work
but is outside the scope of this paper.

3. ltis easy to extend our framework to allow the observation to depetigeqprior state, action, and posterior state.
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actions, a suf cient statistic, known as a bellg{s), is used to summarize the probability of the
world being in each state given its past history,

b(s) = Pr(st = Sjao;z1;:::;2t 1,8 1,%t): 1)

The agent can therefore plan based only on the current belief sttiter than on all past actions
and observations (Smallwood & Sondik, 1973). For example, in the tangeitoring problem
introduced in Section 1, the agent maintains a belief over the possible locatieash target. The
agent updates its belief at each step, after taking an agt@oml receiving an observatian(such as
a camera image of a far off target), using the Bayes lter:
z
)= (nad= p(zjas) N p(sYs; @)b(s)ds 2
S,
where (b; a; 2) represents the belief update function anid a normalization constant.
The planning problem is to compute a policy. b! a, which is a mapping from belief states
to actions, that maximizes the expected sum of fdtdiscounted utilities:
" #
x o
= argmax 'Elr(b)] ; 3)
i=1

whereE[r (k)] denotes the expected reward at time stegven the actions specied by and
possible observations received.

Many POMDP solvers, such as those by Smith and Simmons (2005), Por&sisv/I&paan,
and Poupart (2006) and Kurniawati, Hsu, and Lee (2008), perf@@MDP planning of ine by
calculating a value function over the belief spate b! R . V(b) is the expected total reward of
starting from any belief stateand following an optimal policy;

z

V(b) =max r(b;a + p(zjb; QV( (b;a;2) ; 4)
azA 227

wherep(zjb; a = Rsp(zjs; a)b(s)ds. Given a value function over the belief space, a polioyan
be extracted by nding the actiomwhich maximizes Equation 4.

Instead of computing a value function over the entire belief space in ag\drcting, we take
an alternate approach of planning online, only explicitly computing a policy ghan action) for
the current belief. In particular, an action is selected by performing d-xerizon forward search
which is used to estimate the values of each of the possible action choicegdtartinthe current
belief. This action-selection approach is closely related to methods fronotiteols community,
including Model Predictive/Receding Horizon Control, and forwardaehas also received recent
attention in the Al POMDP community (see the recent survey in Ross, PinagueR & Chaib-
draa, 2008a).

To select an action for the current belief, generic forward searploaphes compute a looka-
head AND-OR tree (Figure 1). The goal of the tree is to estimate the valu&infteach of the

4. We will assume in this paper that we are interested in problems with an irhoiteon. If the problem has a nite
horizon, the discount factor can be set to 1, and our forward search process (which we will shaetgribe) will
search out to a depth of at most the problem's nite horizon.

5. This is often intractable to compute, so in practice the value function is afferoximate.
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Figure 1: A forward search trea.are actionsz are observations, arigare beliefsky is the initial
belief, whileb;; refers to thg th belief leaf node at depth

possible actions from the current bellgfin order to take the action with the greatest value. Given
the root belieb, the tree is constructed by rst branching on all possible actions fromoibie After
each action, the tree then branches on possible observations. Fatig@ott action-observation
combination, we can compute the resulting internal belief that would occut éthian-observation
trajectory were followed using Equation 2. This process of alternatetychiag on actions and ob-
servations is repeated out to a nite depth. This depth, known as thehskarizon, determines
how far into the future the effects of actions are considered when seecpnssible action for the
root (current) belief state.

Once the tree has been constructed, the value of the actions at theer@onguuted by prop-
agating the rewards from the beliefs at the leaf nodes back to the rootin&tar the leaf node
rewards, we take an expectation over observations. We then add inpibeted immediate reward
from taking the parent action, and next take the maximum reward acrosiblailg action nodes.
This process is repeated all the way up to the root node. The expeatadissare maximized across
actions but summed across observations because the agent canvehicbszction to take, but must
optimize over the expected distribution of observations.

After the planning phase, the forward search procedure executexctioa at the root with
the largest value, and then receives an observation. Given the gsevédief, action taken, and
observation received, a new belief is computed using Equation 2. Tharfdrsearch planning
process then repeats, with the new belief as the root node. Re-plaffiteingvery time step enables
the agent to condition on the action selected and the actual observatiedece

There are a number of attractive characteristics of an online, foragactch framework. First,
computational effort is directed only towards belief states that are rbkcfiam the current belief
under different actions. This property enables a forward searcim@ido compute a meaningful
policy in an arbitrarily large environment, since only a subset of the enwviemn is relevant at
any point. Second, online, forward-search ts well into systems thad igeed, time constrained
solutions where a large amount of advance computation is not possibtéy, f@svard search does
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not have to compute an explicit representation of the value function, whitlbe an advantage in
factored domains where belief updating and immediate expected rewarthtialtsiare relatively
simple, but the value function itself is complex to represent.

However, the computational cost of generic forward search will stilesgéh the cost of the be-
lief updating and immediate expected reward calculations, multiplied by the nurhtvreemodes
which grows exponentially with the search horizon. The costs of belieftipgl and calculating
the immediate expected reward typically scale either linearly or exponentially vathuimber of
state variables and the size of their respective domains, depending orépeidence relations
among the state variables. When the state variables are continuously;\ahaetherefore take
on an in nite number of values, we will typically need to employ some parametraoorpressed
representation in order to make these calculations tractable. The numbes abtdles scales expo-
nentially with the horizon according ©((jAjjZj )"), wheregjAj andjzZj are the number of actions
and observations respectively addis the search horizon. Therefore, standard forward search ap-
proaches will typically struggle when there are many state variables amat®wvariables with large
domains and when a largi¢-step lookahead is necessary to achieve good performance.

One approach to accelerating planning over large, long horizon prolidetosise temporally
extended macro-actions, a technique that has been used succesdtulfyabservable settings for
some years (Sutton, Precup, & Singh, 1999). There has been limitedatimhoof these ideas for
partially observable settings (exceptions include those by Theochardiaethling, 2003; Hsiao,
Lozano-Rerez, & Kaelbling, 2008; Kurniawati, Du, Hsu, & Lee, 2009). In ourrtvave de ne a
macro-action as a hite open-loop sequence of primitive actions that isuee@evithout regard to
the observations received during the execution of this action sequEncexample, in our target
monitoring problem, one macro-action could be for the helicopter to travel &y adgion, which
might involve a sequence of individual turns and straight line moves. &yicéng the action space
to a set of lengtih. macro-actions, the number of expanded nodes due to the action brafattiong
can be reduced froppj ™ to jAj7 whereA is the set of length. (or longer) macro-actions, and
H = T is the macro-action horizon or depth

2.1 Macro-action Construction

If only a small set of macro-actions are evaluated during the searchegtricted action space will
result in signi cant computational savings due to the smaller expoRef¥s. H) in the compu-
tational complexity expression. However, this restriction can also resultban @lgorithmic per-
formance if all the macro-actions being evaluated are unsuitable. In thés,pap assume that
macro-actions are provided by a domain expert as part of a comprehetrmtegy to scaling up
to large problems with a multi-step lookahead. The macro-actions we use ixmeniraental re-
sults consist of open-loop policies which are a function of propertieseobtiief state at which
the macro-action is originated, and can be either computed and stored of cemputed online at
every timestep. Further details are provided in the experimental section.

Our reliance on domain knowledge in this paper is similar to prior work in the fldgeovable
community that separately investigated the potential advantage of macrosdogfare turning to

6. An example of such a domain is one in which the state space is a set péimdint variables, but the reward is an
aggregate function of these variables.

7. The macro-action depth refers to the number of macro-actionsrthakacuted in sequence from the root belief node
to the leaves.
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the challenge of learning these macro-actions (see the work by Suttonl®8 for an overview of
one particular formalism). Although constructing macro-actions automaticallyyisrial the scope
of this paper, we have presented in related work a domain-indeperideritran (PUMA) that au-
tomatically generates macro-actions for planning in partially observable dsifiééret al., 2010b).
Borrowing the notion of sub-goal states from the fully-observable prenliterature (McGovern,
1998; Stolle & Precup, 2002), PUMA uses a heuristic that macro-actmmbe designed to take
the agent, under the fully-observable model, from a possible start stdég the current belief to
a sub-goal state. The PUMA algorithm was tested on variations of theimgrgal domains that
are used in this paper, and we encourage the reader to refer to theermleotioned paper for more
details.

Regardless of how the set of macro-actions are generated, sexgrkputational challenges
remain to scale macro-action forward-search to large, long environmeénsgs, recall the number
of nodes in generic forward search scale©gf\j Hjzj ). Using macro-actions reduces the rst
term in the product, but does not directly change the second term, sortiteenof tree nodes still
is an exponential function of the search horizén Second, using macro-actions does not directly
alleviate the cost of performing belief updates and expected reward cdiopatat each tree node,
and these computational costs can be substantial in large domains. Tla centribution of our
paper is a method for ef ciently and analytically computing the result of a maction given any
possible observation sequence received during its execution. Thidlaw as to use temporally-
extended actions to scale to certain types of large, long POMDPs.

3. The Posterior Belief Distribution Algorithm

To plan with macro-actions in a forward search manner, we must computggbeted reward re-
ceived during a macro-action, as well as the expected future valuetafieg that macro-action.
The reward the planner can expect to receive from a macro-action expgeeted sum of the re-
wards under each of the posterior beliefs the agent will reach aftaraedion in the macro-action.
However, the process is complicated by the fact that posterior the beligbig aesult of receiving
an observation. As the agent does not know which observations widldesved during the macro-
action, it cannot compute a single posterior belief reached during the raatiom, and therefore
cannot compute the expected reward.

Of course, an easy solution is to consider all possible observationgoamuoute the expected
reward of all possible beliefs that can result from all possible obsiensthat could be received
during a macro-action. By computing the expected reward at each alisermode, the AND-OR
tree constructed during forward search implicitly computes this expectatemratipossible obser-
vation sequences. But, if computing the expected reward of a macro-aetjaires enumerating
all possible observation sequences that could be experienced dxeagtien, the evaluation of a
macro-action will grow intractable quickly (see Figure 2(a)). The numbebservation sequences
to be considered will grow exponentially with the length of the macro-actioth emumerating all
possible observations may not even be feasible in domains with continuseisrations. One alter-
native may be to sample observation sequences for a given macro-&égjare(2(b)), but sampling
is likely to still be computationally intensive due to the per-sample cost of peifigra belief update
and expected reward calculation at each step of each sampled obseseajieence.

We can avoid this computational burden by realizing that it is sometimes possésialigically
represent the distribution over posterior beliefs. For a given segudractions, what we need is the
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Figure 2: Three methods to represent the resulting set of beliefs aftegla snacro-action. (a)
All possible observations are expanded. (b) A subset of possiben@imon trajectories
are sampled. (c) Compute an analytic distribution over the posterior belieish would
have been generated via an exhaustive enumeration of all possiblegailtsesequences.
by is the initial belief, whilely; refers to thg  pelief leaf node at depth

expected reward for those actions; if we cannot compute the distributemstates ahead of time,
butcancompute a distribution over state distributions, we can still compute the expewaisiaired
graphical depiction of this process is shown in Figure 2(c). By analyticallgputing a distribution
over beliefs, we avoid not only the exponential explosion of potentiadasion sequences (as a
function of the macro-action length), but also the costly step of performinyy nmalividual belief
updates along the possible observation sequences.

We de ne hyist as the posterior distribution over beliefs after a macro-action. We will show
in the next subsection (3.1) that when the parametric form of the model isteatlthe belief
is always Gaussian, then the distribution over posterior beliefs is itself adizauover Gaussian
beliefs, as illustrated in Figure 3. This property follows from the fact thiafuture beliefs are
Gaussian. The random variables described by the distribution overipodieliefs are therefore
the means and covariances of the posterior beliefs. In this bggeconsists of an expression
for the distribution over belief means and an expression for the distributientbe covariances
after a macro-action. We will show that the means are distributed accordiagstaussian and
the covariances are a delta function over a single covariance, allowitg represent the entire
distribution over beliefs as a Gaussian distribution over beliefs means amglatselief covariance.
In Section 3.2 we will further show that we can analytically compute the exgeetegard of the
distribution over beliefs resulting from a macro-action for certain classesvard functions. Given
the ability to analytically compute a distribution over posterior beliefs, we will sindBection 5 the
computational complexity of forward search is reduced to a function of theavection horizon
H: for macro-actions of length 2 or morke ( 2) we will see that it is signi cantly faster to search
to long horizons.
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Figure 3: Distribution of posterior beliefs. a) A single Gaussian postertiebis the result of
incorporating an observation sequence. b) Over all possible olisersequences, the
distribution of posterior means is a Gaussian (black line), and for eatarfmvsmean, a
Gaussian (blue curve) describes the agent's posterior belief.

3.1 Exact Computation of Posterior Belief Distribution

Let us assume for the moment that the agent's belief can be exactly nej@eses a Gaussian
distribution over a continuous state space, and that the observation asitidcramodels are both
linear-Gaussian. Formally, the state transition and observation models eEprbsented as follows:

st = Asy 1+ Bag+ "5 "t N (0;P) %)
zt=Cst + ; N (0;Q) (6)

whereA andB are dynamics matrices; is the observation matriX? is the covariance of the
Gaussian dynamics process dpds the covariance of the measurement noise.

When the state-transition and observation models are normally distributed eadflimctions
of the state, the Kalman lIter (1960) provides a closed-form solution forpth&terior belief over
statesN ( ¢; ¢) given a prior belief over statell ( ¢ 1; ¢ 1),

Tt A { 1+ Bat t= ¢t Kt(Zt Cit) (7)
T=A (AT+P (=(CTQ lc+  H Y )
whereN (f; F ) is aD -dimensional Gaussian with me&rand covariance matrik ,
Ki= {CT(C {CT + Q) !isthe Kalman gain and, and  are the mean and covariance after
an action is taken but before incorporating the measurement.

Our key interest is to represent the distribution over possible beliefsdh#t cesult after taking
a particular action, but receiving any of the possible observations. tNaten the current setup,
all posterior beliefs are Gaussians, and can therefore be completefctdrized by their mean and
covariance. We now derive an expression for the distribution overdeepor belief means, under
any possible observation, when the prior distribution over beliefs is simpljta fuection over a
single belief. We rst re-express the observation model as

zz N (Cs;Q) 9
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which we can use to compute an expression for the probability of an @tssmgiven the belief

meanp(z;j ), by marginalizingoves; N (7; ), as
. R .

P(zj7t) = P(zijst)p(sti¢)dst (10)

= N(C—;C (CT + Q): (11)

We can perform further linear transformations to obtain an expressidhdalistribution of poste-
rior means, under any potential observation:

z N (C;C (CT+ Q) (12)

z C, N (0;C (CT+Q) (13)

Ki(zz C7) N (0;K{(C (CT+ QK/) (14)
Tt K@ C) N (TK(C (CT+QKY{) (15)
¢ N ((uK(C(CT+ QK/) (16)

¢ N (T (CTK{) (17)

where Equation 17 is computed by substituting the de nition of the Kalman gain.

At this point, a somewhat unusual change has occurred, in th#te mean of the distribution
itself, is now a random variable. Without knowing the value of the particutesenvation that
occurs after a primitive action, we cannot deterministically predict the postaean of the belie.
However, we can model the probability of any speci ¢ belief state, whid¢bcéfely means that
we will compute a distribution over the belief meansand covariances . Equation 17 shows
that the distribution over the belief means is normally distributed abguwith a covariance that
depends on the prior covariance and the observation model parameters. Sampling a mean from
this distribution is equivalent to selecting a particular observation.

We have just presented a formula for calculating the posterior distributientmlief means
after one action, and any possible observation. We now wish to show ghposterior distribution
over beliefs means after a sequence of actions remains a Gaussian titistrifitnis will allow us
to compute an analytic expression for the posterior distribution over beli@fsthuld result from
a macro-action. We therefore require a method to iteratively use Equationat@der to compute
the posterior distribution over beliefs for a complete macro-action and assilpge observation
sequence.

We rst combine the process and measurement updates for a single priattiea belief up-
date in order to get an expression for the posterior belief means in terme pfithr belief mean.
We marginalize overy, thgeposterior belief after the transition update but before the observation
update,usin@( ¢j + 1)= P( tj ¢)P(T¢j ¢ 1)d . As™; is adeterministic function of; 1 (see
Equation 7a), thep(™;j t 1) is simply a delta function, which means thgft +j 1) is identical
to Equation 17 after substituting using Equation 7a:

P(tj t )= N(A ¢ 1+ Ba; (CTK{): (18)

In a one-step belief update, the belief mean at the prior time step, is assumed to be a known
value. However, for a macro-action, once the rst primitive action hanliaken, the posterior be-

8. Note that we will show later in this section that we can deterministically préuécposterior belief covariance. Its
distribution is a Dirac delta that is independent of the speci ¢ observaticgived.
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lief mean will depend on the received observation. In absence of thvel&dge of that received ob-
servation, we will instead have a distribution over the belief means. Therdéw the second prim-
itive action in the macro-action, the prior belief is now given as a Gaussian N (m¢ 1; ;)
wherem; 1 and , ; are random variables. In order to compute the probability distribution over
t, we must integrate over this distribution of prior belief meaps;:
VA
p( tjme 15 ¢ 1) = PC ¢ ¢ 1)P( ¢ ajme 1; ¢ Pd ¢ 1 (19)
t 1

Since both terms inside the integral are Gaussian distributions, we can aablyt@mmbine these
two Gaussians, one of which is independent pof; and one of which is dependent op ;. Inte-
grating over ; 1, as we had done in Equations 9-11, we nd that the mean of the postetief be
means is conveniently still a Gaussian distribution over a function of the prianrogthe belief
means and covariance:

; N (Am; 1+ BagA , AT+ (CTK{) (20)
or
t N (me; ) (21)

wherem; = Am; 1+ Barand , = A , ;AT + (CTK[. Equation 20 can now be used to
predict the posterior mean distribution after a multi-step action sequencemigsgthat the agent

is currently at time and has a particular prior mean (which we can also express as a Gaussian
with zero covarianceN ( ¢;0)), the posterior mean after an action sequenc® dfme steps is
distributed as follows:

t+D N (mt+D; t:t+D) (22)
where
Mep = f( ¢ 1A Bat1:t+p) (23)
= Amup 1+ Bawp (24)
P .
= APm¢+ AP 'Bauj; (25)
i=1
and
D - —_ .
wep = ATP THCTDI(ATP DT (26)

i=t

Note thatm;, p does not depend on observations; it gives the mean of the distributi@tiefdthat
might result from the received observations.. p is dependent only on the state-transition model
parameters and can be calculated via a recursive update along the edtiemse.

We now consider the covariance of the posterior beliefs that may reseitttaking a macro-
action. Recall that for a single belief, the posterior covariance aftergakiprimitive action and
receiving a particular observation can be calculated using Equationt8.tiNg this formula is inde-
pendent of the actual received observatigrand the prior ; 1 or posterior mean;. Formally, this
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property exists because the Fisher information associated with the diimemadel is independent
of the speci c observations. Therefore, the posterior covarianes afy observation sequence of
known length can be calculated in closed form given the prior covarjavitteout needing to know
the observations received along the way.

We can now specify the form difjis; , the posterior distribution over beliefs after a macro-action:

buist ( t+7:)= NE( ¢ sABag+T) 1) (5 9 (27)

wherebyist ( t+71; ) is the probability of arriving in posterior beliéf= N ( (+1; ) aftertaking a

particular macro-action, Equation 22 de nes the distribution over belief syeard Cis computed

by iteratively applying Equation 8. This expression shows that for pnebleith linear-Gaussian
state-transition and observation models, we can exactly calculate the distribliosterior beliefs
associated with a macro-action.

3.2 Calculating the Expected Reward

The prior section outlined a procedure for calculating the posterior skel@fs after a macro-
action. The reason to compute this distribution is in turn to be able to calculategbeted reward
of each macro-action, which will be used to compute the best action for thentibelief.

To calculate the expected reward of a macro-action, we start by coingjdiee expected reward
of starting in a particular belief statey and executing d_-length macro-actiom consisting of

r(bo; &) = r(bo;ag) + p(z1jbo; @) Q(B*%:; &y ) (28)

Z1
where we have usdm*?! to represent the updated belief after taking acéipand receiving obser-
vationz; from by, & to represent the macro-action consisting of the second thriottgprimitive
actions of the macro-actiom andQ(b*?1; &,. ) to represent the future expected reward of taking
the remaining actions from belief:?1. Recursively expanding the second term in Equation 28 we
obtain the following expression

r(bo;aL) = r(pa)+ p(z1jbo; a1)r (BP1#1; ap) +

z “
2 P(z1jbo; a1) p(zojbP % ; ag)r (BP12+:82%2; ag) + (29)
21,22 "
Z by 1 #
L1 p(zijbal§21;iii;ai 1,Zi 1;ai) r(bal;iiial_ 1,ZL l;aL): (30)
210520 =

The rst term in Equation 29 represents the expected reward from takigst primitive action

in the macro-action from the initial belief state. The remaining terms each egyiré®e expected
reward at the-th primitive action of the macro-action, where the expectation is taken over all
possiblei 1 length sequences of observations that could have been receivedhat pmint (as
well as the standard integration over the state space). From Equation Bawwea closed form
expression for the distribution over belief states possible after a segépcimitive actions. We
can use this to re-express Equation 29 as a function of the distributionbeliefs:

X .
r(bo;81) = r(bo;ar) + "l an) (31)

i=2



EFFICIENT PLANNING UNDER UNCERTAINTY WITH MACRO-ACTIONS

wherebl,. ] is used to represent the posterior distribution over beliefs that resultstaiteg the
rst i 1 primitive actions in macro actioe. Slightly abusing notationr, (byist ; @) represents
the expected reward for taking actian given the posterior distribution over belidigs:, and is
expressed as

ZZ

r (buist ; &) = . b(s) byist (D) (s; & )dsdb: (32)

Combining Equations 31 and 32, we can see that the expected reward afr@-&cton can be
calculated from the sum of the expected reward of taking a primitive actmn the posterior
distribution of beliefs at each step along the macro-action.

Recall from the prior section that the posterior distribution over beliefsbeafactored into a
Gaussian distribution over the belief meanéquation 22), and a Dirac delta distribution over the
belief covariances (since all beliefs will have identical covariances):

buist (; ) = N(jma;, 4) (5 a) (33)

wheremg is the mean of the belief means after primitive acton 5 is the covariance of the belief
means after primitive actioa, and 5 is the covariance of a belief state after primitive action
As the belief state itself is a Gaussian,

b(s)= N(sj; ) ; (34)
we can re-express the reward as
Z7Z
r(bgist; @) = r(s;gN(sj; ) N( jma; ) (5 a)dsdd (35)
2’z
= rs;aN(sj; a)N( jmy; ,)dds; (36)

S

where the second line follows due to the Dirac delta distribution on the beliafiemces. Expand-
ing out the formula foN (sj; ) we see itis identical to the formula fof ( js; ) :

. 1 1
N(si; ) = p——rsexp( 5(s ) Xs )7 (37)
2 j jNa 2
_ 1 1 1 T
= pmexp( (9 97 (38)
= N¢( js;): (39)
Therefore, we can substitute the equivalent expression to yield
ZZ
r(buist; @) = r(s;a)N( js; a)N( jma; 5)dds: (40)

S

Completing the square in the exponent, we re-express the product dfdhe &@vo Gaussians as
ZZ
r(byist; @) = r(s;aN (sjma; a+ N ( j&;C)dds; (41)

535



HE, BRUNSKILL, & Roy

where€ = ( ,1+( 4) 1) lande= g(ma( a) T+  ,1). We then integrate over to get

r(buist;@) = r(s;aN(sjimg; a+ L)ds: (42)

S
If the reward model itself is a weighted sumMf Gaussians,

rs;a)=  wiN(sjj; j); (43)
j=1
then the integral in Equation 42 can be evaluated in closed form as

Z R
r(buist; @) = WiN(sj j; j)N(sima; a+ ,)ds (44)
Sj:1
X z
= WiN(jjma; j+ at+ a) N(sjcy;Cy); (45)
j=1 s

where we have again completed the square in the exponent, and dewednstant, = ( j 1y

(a+ a) 1) tande = Ci(j Y+ ma( a+ a) 1. Integrating we obtain an analytic
expression for the expected reward of a primitive action under a distnibafibeliefs:
Xr _
r(byist; @) = WjN(ija; it at a): (46)

j=1
A similar closed-form expression is available if the reward model is a polyridomation of
the state,

X _
r(s;a) = wjs; 47)
instead of a weighted sum of Gaussians. Substituting Equation 47 into Eqdatioelds

Z
Wi N (sjma; a+ ,)ds

r (byist ; @)

SN (simg; a+ ,)ds: (48)

I
=

Therefore, evaluating the expected reward involves calculating thél rshoments of a Gaussian
distribution. Each of these moments is an analytic expression of the Gaussaaname covari-
ance? So, for reward models that are either a weighted sum of Gaussiansjalr are polynomial
functions of the state space, the expected reward of a macro-actioati@gd8) can be computed
analytically.

For other arbitrary reward models it may not be possible to analytically contipeitexpected
reward of taking a primitive action in a particular distribution over beliefs. uohscases, we can
approximate the expectation in Equation 42 by sampling.

9. The Gaussian distribution is completely described by its rst two mometitdtigher order moments are simply
functions of the rst two moments.
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Figure 4: In PBD, individual beliefs are sampled from the posterior distribution over beligfs ,
implicitly sampling a particular observation trajectory. Then the best macroraistio
selected for each sampled posterior belief. A sum is taken over all the shbwllefs,
again corresponding to a sum over the implicitly sampled observation sexgidrere,
Iy refers to beliefs at macro-action depth

3.3 Branching on Posterior Beliefs

So far we have discussed how to compute the posterior distribution ovefistibbd can arise after
executing a single macro-action, and how to compute the expected reveclatsd with that
distribution. But during planning we wish to compute the value of not takinggushgle macro-
action, but sequences of macro-actions. This allows us to considaargzemuch further in the
future, which can be useful in selecting the best action to take for therduselief. For example,
consider a large of ce space domain where a robot is trying to navigategmahlocation, and
macro-actions are to go to the end of a hallway and turn left or right. Assutherobot starts
far from the goal location, a series of macro-actions will most likely be eééd order to reach
the goal, and therefore it will be important during forward search toidens search horizon of
multiple macro-actions.

However, when constructing the forward search tree, it is not immedidesgy lcow to evaluate
each branch in the three at the end of each macro-action. We have d fdoseexpression for
the posterior distribution over beliefs at the end of the macro-action. Tigpor set represents
the distribution of beliefs possible givexl possible observation sequences that could be received
during the macro-action's execution. However, different individuagtprior beliefs, or different
subsets of the posterior belief distribution, may be associated with diffieeshsubsequent macro-
actions in the tree, because different individual posterior beliefs arithpthe result of receiving
a different set of observations during the macro-action execution agdewaal important infor-
mation about the environment that result in different best subsequamb+aetions. Though the
motivation behind macro-actions is that it is reasonable to act in an operidsiojon for a limited
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Algorithm 1 Forward Search with Macro-Actions

Require: Initial belief by, Discount factor , Macro-action search depHt, Sampling numbeN
.t 0
2: loop
Compute set of macro-actio#s
for each macro-actioa 2 A do
Q(by; &) = EXPAND(&;; ky; ; H;Ng) f See Algorithm g
end for
Execute rst actiora; of & = argmax, Q(by; &)
Obtain new observationy and reward
b1 = (b az)
100 t t+1
11: end loop

time period, the received observation sequence does provide inforratointhe underlying belief
that is likely to be useful for selecting future macro-actions.

Since we do not know in advance which subsets of posterior beliefsspeiated with the same
best subsequent macro-action, we instead sample from the posteridrdosligution, and then
evaluate future macro-actions for each of these samples (see Figulfastration). Sampling a
posterior belief is equivalent to implicitly sampling an observation sequemd¢bdglanned macro-
action, without having to actually perform belief updates along the actiserehtion trajectory.
Note that the potential space of observation sequences grows exipdpeavith the macro-action
length. As the posterior distribution over beliefs is a Gaussian, its propedie®e completely
described by its mean and covariance, which means that the posterionisiribver beliefs will
typically be of much lower dimension than the observation sequence spguerirentally we will
see much better performance sampling from the posterior belief distributianfrima sampling
from the space of observation sequences. The sampled beliefs dséoria a non-parametric,
particle estimate of the posterior distribution of beliefs that is present aftiaigtithke macro-action.
As the number of sampld$s goes to in nity, the sampled distribution will become an arbitrarily
good approximation of the full posterior distribution of beliefs. As the cievere is a Dirac delta
distribution, sampling is needed only for the posterior mean distribution, gemgiposterior belief
samples by associating each posterior mean sample with the posterior covarkian.

3.4 The PBD Algorithm Summary

We are now ready to present our PBD forward search algorithm (Atgorl). Given the current
belief, we select an action by constructing a macro-action forwardlséae. Placing the current
belief at the root, we expand each possible macro-action (Algorithm B)pating the expected
reward and the resulting posterior set of beliefs. We then sample a xetbauof posterior beliefs.
Forward search then proceeds from each of these sampled beliefep@s this process out to a
xed horizon depth and then select an action for the current belief bgnaing its value, starting
from the search leaf nodes. After executing this action, an observati@tes/ed, and the new
belief state is computed. The whole process then repeats for this new heféeef Note that PBD
will only ever select actions that are the rst action of a macro-actionll framitive actions are to
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Algorithm 2 EXPAND — Expand Macro-actions via PBD

1: Input: Macro-actiona, Belief stately, Discount factor , Macro-action search depH,
No. posterior belief samples per macro-actibn
2. if H =0 then
return O

3

4

5 Rg=0

6: baist = b

7. forj=1toL do

8 Ra= Ra+ r (Byist ; &)

9: Update the posterior distribution of beliddgs;
10: end for

11: fori =1 toNsdo

12: Sample posterior meam according taN (mg+1; (1)
13: b N (ni; 1)

14: Generate next set of macro-actioRg®

15: for &®t 2 A™Xt do

16: Q(b; &™) = ExpanD(&]® b, A  1,Ns)
17: end for

18: V=Rat+ g " Maxge: Q(bi; &)

19: end for

20: returnV

21: end if

be considered, the number of macro-actions that are evaluated forothieetief at every timestep
must be at least the same as the size of the primitive action space, andigatihepaction must be
the rst action of at least one macro-action.

4. Approximate Computation of Posterior Belief Distributions

The PBD algorithm described so far assumes that the transition and atiserfunctions are lin-
ear functions of the state with Gaussian noise. When these functionsratmear, the traditional
Kalman Iter model no longer provides an exact belief update, and for Bie &gorithm, the dis-
tribution of posterior beliefs cannot be calculated exactly. In this sectiobrieey describe an

extension to the PBD algorithm to handle a wider class of observation modeigly paramet-
ric models that are members of the exponential family of distributions (Baffrid@isen, 1979).

For non-linear transition models, there exist techniques such as the edt&atman Iter to ap-

proximate the posterior with a Gaussian; however, we do not formally canisidorporating such
techniques into our PBD algorithm here.

We choose to consider exponential family observation models since this faclilglés a wide
array of distributions, such as Gaussian, Bernoulli, and Poisson digtrisyand has certain appeal-
ing mathematical properties. In particular, we leverage work by Westjdgarand Migon (1985)
who constructed linear-Gaussian models that approximate the non-Gegigs@nential family ob-
servation model in the neighborhood of the conditional megde;,. They then used the approximate
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linear-Gaussian observation mode in a traditional Kalman lter, to maintain adfasen Gaussian
representation of the posterior belief, creating an exponential family Kahiften (efKF). For com-
pleteness we include West et al.'s derivation of the Iter in Appendix Ad are present the main
equations here.

Constructing the approximate linear-Gaussian observation model regomgzutation of the
rst two moments of the distribution and the linearization around the mean estimateist time
step. An exponential family observation model can be represented asdpllo

p(zij ) =exp(z{ «  ()+ (z); t= W(st) (49)

wheres; is the hidden state of the system,and (( ;) are the canonical parameter and normal-
ization factor of the distribution, and/ (:) maps the states to canonical parameter valég) is
also known as the canonical link function, and depends on the particulaberef the exponential
family.

The rst two moments of the distribution (West et al., 1985) are
_ @t( t) @ t( t)

E(zj )= += @ W Var(zij 1) = *t = W W) (50)
t= t t t= t

where  and °; are the derivatives of the exponential family distribution's normalization facto
both linearized about; = W ().

Given an action-observation sequence, the posterior mean of thesalgeliet in the efKF can
then be updated according to

t= A ¢ 1+ Ba 1= ¢+ Ki(za W()); (51)
T=A {AT+P =Y L (52)
whereK; = Yi(Yy oY + °, 1) listhe efKF Kalman gain, angt =  ° ' (4 z)
is the projection of the observation onto the parameter space of the expbfantig observation
model.Y; = @t - is the gradient of the exponential family distribution's canonical parameter,

§ St=
linearized about;.

We can now incorporate these results to compute a modi ed form for therpmdbelief mean
and covariance distributions, which were represented by Equationd 32awhen the observation
model was linear Gaussian. Now, for exponential family observation matthelgosterior belief
covariance comes from Equation 52. The expression for the distributitie posterior means can
be modi ed based on the efKF equations:

XT
t+7 N (F( t 1AGt+T;Bra+ 15800+ 7); TR (53)
i=t

It is worth noting that in contrast to our prior expressions for the postéedef distribution
(Equations 8 and 22), which are exact and completely independent oét¢kaved observations,
Equations 52 and 53 are no longer independent of the observationseubtzecause the obser-
vation model parameters are linearized about the prior meamience while the parameters are
independent of the observation that will be obtained for a macro-actmresee of length 1, for a
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longer macro-action, the observation model parameters depend on thelg@vations obtained.
We approximate this update by linearizing about the mean of the prior meanuistnib; at each
step along the action sequence, rather than the true prior belief med@fe will shortly see that we
still obtain good experimental results using this approximation.

An alternate popular approach for non-Gaussian systems is to use &phetico represent the
system state. However, in high dimensional, continuous environments similardodls considered
in this paper, particle lters often suffer from particle depletion, or reguirvery large number of
particles to accurately capture the posterior. The costs of belief updatohgeected reward
calculations scale with the number of particles. In contrast, our approxinBidecBmputation has
the same computational complexity as our exact PBD computation, which we wibrigrate in
later sections to scale polynomially with the number of state dimensions.

This approximate method for computing the posterior distribution over beliefbeaised as a
substitute for exactly calculating the posterior distribution over beliefs in tHe &gorithm.

5. Analysis

Here we provide a formal analysis of the accuracy and computationallewitypof our PBD al-
gorithm. Throughout this section we assume belief states can be repreegattly as Gaussian
distributions: in other words, we assume a linear-Gaussian system. Inlliwifg sections we
will demonstrate experimentally that the PBD algorithm is useful in a wider vaokproblems
using an EKF or the efKF described in Section 4, but incorporating tlee eftthese approximate
Itering techniques into an analysis of the algorithm is a topic for future netea

5.1 Performance

PBD selects actions by performing a limited-horizon forward search usiegtdcted policy space
induced by the macro-actions. However, during execution, only thestegt of the macro-action
is taken. After an observation is received, the belief state is updatedhamgblanning is repeated
from the resulting belief. By only taking the rst primitive action, the system rtelge sequences
of actions that do not correspond to any of the known macro-actiofegtigely expanding the
considered policy space. As a result, the performance will be at legsiaisas actually executing
the entire macro-action. However, it would be useful to determine if any cleém$e made about
the belief-action values calculated as part of the PBD algorithm. Obviouslygt®ived rewards
of the executed policy will always be less than or equal to the optimal polieysrds, since the
policy space considered during planning is smaller than the full policy spémeever, the values
calculatedby the PBD algorithm are only approximate values due to the approximatiocis &su
sampling a subset of the posterior beliefs) made during the computatiorsprée now prove that
for linear-Gaussian systems, the values computed by PBD, minus an addsiian term due to
the approximations incurred by sampling a subset of the posterior beliefseach macro-action,
are probabilistically guaranteed to be a lower bound on the true optimal vddaeghe purpose of
this analysis we will assume that all rewards are scaled to lie between 0 &hdslthe maximum
number of macro-actions.

Theorem 5.1 Given a linear-Gaussian system, an initial belfand any > 0, and for any
reward model which is either a weighted sum of Gaussians, or a polyh@miztion, the following
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lower bound on the optimal value bholds

Veep (D V(D

. - 2 H .
with probability at leastl ~ , where ,; = "Vpax + £2( \’,ngl—aslog(m)), Vimax IS @
bound on the maximum vaftfeandVp gp (b) is the best value computed foby the PBD planning
algorithm.

Proof First recall in the PBD algorithm that after each macro-action, a subgbegfossible pos-
terior beliefs are sampled from the posterior belief distribution, before ¢geigrfurther expanded.
Note that this is equivalent to implicitly sampling a subset of the observationtajesthat might
have been received during that macro-action: each sampled posti@dicbrresponds to the belief
that would result by following the macro-action and receiving a particelausnce of observations.
Consider an alternate variant of a macro-action forward search in whigérvation sequences are
exhaustively enumeratét that is, for each macro-action of lendthall jZj- possible observation
sequences are expanded. In this case, the forward search tstrictad is precisely a subset of
a full POMDP forward search tree, since the macro-actions mean thaa@ulipset of actions are
expanded. Therefore, the computed values of this alternate algorithdirecdly a lower bound
on the optimal nite-horizon value, since the policy space considered isa stibset of the full
optimal nite-horizon policy space.

However, for computational reasons, at each macro-action tree oobjea subset of obser-
vation sequences are sampled, and the results are averaged acmissetivation sequences. As
observation sequences that happen to lead to higher rewards maydbeyrtoe, disproportionately
sampled, the resultingegp Vvalue could be an upper bound to the true optimal value. However, we
can now probabilistically bound this error induced by observation sampling,

Prior work by Kearns, Mansour and Ng (2002) proved bounds omMD@ state values com-
puted using a sampled-states forward search given certain constrathtssrmumber of samples, and
the horizon of the forward search. McAllester and Singh (1999) exi@gtitese ideas to POMDPs,
showing that similar bounds on the calculated values of a POMDP belief staltdlm® computed
if a suf cient number of observations were sampled, and forwardcbearas computed out to a
suf ciently large horizon. These results can be applied with little modi cation tio BBD algo-
rithm. Essentially we can consider a new meta-POMDP in which the only availatitms are
macro-actions, and observations are sequences of primitive obsasvaiince we can compute
the expected reward of macro-actions analytically (due to the assumeafdm reward model),
the only errors in evaluating the root belief node values for a macro-aptibcy come from lim-
ited sampling of the observation trajectories, and performing a nite horizokabead. The prior
results of McAllester and Singh directly apply to our meta-POMDP, and thexethe values com-
puted by PBD.

To obtain our nal result, we depart slightly from the presentation of KeaMansour and Ng
who sought to compute the number of samples required, and the horizagreckto ensure the
resulting root state-action values were within a speci dabund of the true value. In contrast, we
seek to compute the resulting error from an input number of sarhfyesd xed horizonH'.

10. The maximum value can be trivially upper boundedraxs., r(s; a)=(1 ).
11. This is possible only if there are a nite number of observations.
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In the proof of Kearns, Mansour and Ng, they show that the errordsstvthe calculateb -
horizon state-action valu@,, (b; @ and the true in nite-horizon policy valu®(b; a) is

jQu(b;d Q(b;adj T Vimax + 1 (54)
with probability at least if
(MNg)Texp( 2Ns=V75): (55)
We can solve Equation 55 for to yield
s
2 H
Vihax log (MN<)™ (56)

Ns
Substituting Equation 56 into Equation 54 and re-arranging yields the desselt. [

If the reward of a macro-action cannot be analytically computed, we qamoedmate its value

by samplingN, samples at each primitive action along the lenigtmacro-action. For an input
Owe can compute a probabilistic bound on the resulting error of the approxirahte at each

primitive action using Chernoff's bound. Using the union bound, the @odiby that the true error
will exceed this threshold at any primitive action along the macro-action is ne thanL © and
the resulting error is at most the sum of the error at each primitive actias efitor (and probability
of error) can be easily incorporated to extend Theorem 1 to the casmefig reward models.

Note that Theorem 1 only states that with high probability ¥agp i IS a lower bound
on the optimal value: it does not provide a tight bound on how close the dechpHgp IS to
the optimal value. To state this in an alternate way,provides a bound on the error introduced
by sampling observation sequences, but PBD still is designed to onlyhse&sc a limited policy
space, that de ned by the macro-actions chosen and used in the ftsaarch. Therefore in general
the computed values, even when a large number of observation segw@rcsgampled, may be
substantially less than the value under the optimal policy.

5.2 Computational Complexity

One of the central contributions of our work is providing an ef cient neaaction forward search
algorithm that can scale to long horizons and large problems. We now artalgzomputational
complexity of our approach. The computational cost will be a function ofdp&rations: comput-
ing the posterior distribution over beliefs, and computing the expecteddexfardistribution over
beliefs. As we will shortly see, the computational complexity of these opegisoa polynomial
function of the state space dimensitnThis low order relationship is possible due to the particu-
lar parametric representation employed for the posterior distribution oliefdbeepresenting the
posterior distribution over beliefs as a Gaussian requires a numberahpters that scales only
quadratically with the number of state dimensidAsPBD is therefore able to scale to large do-
mains. Our computational complexity results are summarized in Table 1. Thooutts analysis

12. If there are multiple independent state variables, or factors, thelegity increases linearly with the number of
independent factors.

13. To represent a GaussiarX¥ndimensions requires a% -dimensional vector to specify the mean, a(X ?) param-
eters to specify the covariance.
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we presume that the macro-actions themselves were selected or computedrioeadn general,
the cost of computing domain-relevant macro-actions will depend on thieyar domain, and
we do not here analyze the possible additional computational cost idcduréng macro-action
construction.

5.2.1 GOMPLEXITY OF GAUSSIAN BELIEF UPDATING FOR ALENGTHL M ACRO-ACTION

The computation for the posterior distribution over beliefs resulting from a@raction was pre-
sented in Equation 53, and consists of a set of matrix multiplications and irmerditatrix mul-
tiplication is anO(D?) computation, wher® is the state space dimension. Matrix inversion can
be done inO(D 3) time. Therefore the computational cost of performing a single update obthe p
terior over belief states is (D 2) operation. This update must be performed for each primitive
action in a length- macro-actiors, resulting in a computational cost of

O(LD 3) (57)

for a single macro-action.

In Section 4 we presented a set of equations (Equations 50- 53) thatente approximately
compute the posterior distribution over beliefs when the observation modd Gaussian, but is
an exponential family. These equations again consist of a set of matrix muliipfisaand the cost
of a single update, and cost of updating over a lefgtmacro-action will again b®©(D?2) and
O(LD %), respectively?

5.2.2 GOMPLEXITY OF ANALYTICALLY COMPUTING THE EXPECTED REWARD OF ALENGTH
L M ACRO-ACTION

The second component of the computational cost comes when we evakiatgttted reward of
a macro-action. If the reward is a weighted sum\gf Gaussians, as speci ed by Equation 43,
this operation involves evaluating the valueNyfL Gaussians at particular xed points. Evaluating
a D-dimensional Gaussian at a single point is@(D ) operation, due to the inverse covariance
that must be computed. The cost for performing this operatipi times is simplyO(N, LD 3).
Therefore the total cost for evaluating the expected reward of a naetiaa when the reward model
is a weighted sum dfl, Gaussians is:

O(LD 3(N, +1)): (58)

Ifinstead the reward model isNy -th degree polynomial function of the state, then the expected
reward calculation consists of the cost of calculatingNhemoments of @ -dimensional Gaussian
distribution (Equation 48). Assume without loss of generality that we are atingpthe N, -th
central moment of ® -dimensional Gaussian: a non-central moment can always be conirgded
a central moment by adding and subtracting a mean term. Le\lth# central moment denote
moments of the fornE[(s; E[s1])?(s2 E[s2]):::(sp E[sp])] orE[(s2 E[s2))N'], and

j denote thej -th entry of the covariance matrix. From the work by Triantafyllopoulo©@ave
know that ifN, is odd, the centrd\,-th moments are zero, andNf; is even N, = 2k) anyN, -th

14. The actual computational cost will be higher for the efKF lIter sindditional operations must be performed to link
the observation and the parameter space, but these operations will lsilnédarubic or lower functions of the state
space dimension.
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central moments can be decomposed into a sum over productsovfiriance terms. For example,
for a four-dimensional Gaussian, one of the fourth central mom&nt2(, 4 = 2k) is

X
El(st  1)(s2  2)(Sss  3)(sa 4)]= 12 3a+ 14 23+ 13 4= i K (59)
1;,2;3;4

where the sum is taken over all permutations of product pairs (in this £2s@4; 14=23; 13=24).
For any2k-th central moment,

X
El(si, Elsi,D(sj, Elsj]):::(sie  ElsiD(sje  Elsj = inj1 izjzct ik (60)

where the sum is again taken over all permutations of product pairs. UThisyglds (N,
1)!1=2k 1(k  1)!) terms which consist of covariance elements to the power of at knostor
a particular central moment, this cost is independent of the dimension of thesptece. Therefore
the cost is dominated by the number of terms, which grows at slightly les&xfidp!). There will
also be an additional cost if the original polynomial was not a central mooaatlation, which
will involve at mostN, D-dimensional matrix multiplications, yielding a cost ®{(N,D?2). In
summary, the cost of computing the expected reward when the rewardlign@pdal function will
be

O(L(D3+ N,!+ N,D?)): (61)

5.2.3 GOMPLEXITY OF CONDITIONAL MACRO-ACTION PLANNING (PBD)

Sampling beliefs from the posterior distribution over beliefs requires samfbing a multivariate
Gaussian over the distribution of belief means, which we accomplish by corgpgbenCholesky
decomposition of the covariance matrix=  AAT, anO(D?) operation. Each belief mean is
generated by rst constructing B -dimensional vecton, consisting ofD independent samples
from a standard (scalar) normal distribution. A sample from the desiredveuigtie Gaussian
N (sj; ) issimply + Ag. SamplingNg times involves the one-time cost of computing the
Cholesky decomposition plus the matrix-vector multiplication for each samplejngeddcost of

O(D3+ NgD?): (62)

This procedure is performed at every branch point in the forwantkedeee (in other words, at all
macro-action nodes except those at the tree leaves). For concegteoesider a horizon of two
macro-actionsH = 2). After expanding out each of tH&] macro-actions, we will sampl g
beliefs. From each resulting belief state, we will again expand each pAthmacro-actions: refer
back to Figure 4 for an illustration. The computational complexity is now the dutineocost at
horizon one and two:

O(jAJ (LD N, + NsD?+ D3) + jAj?NsLD 3N;) = O(jAj (NsD? + D3) + jAj?NsLD 3C); (63)

where the second expression is derived by considering only the hogiher terms. In general, the
computational complexity of selecting an action using PBD when considerintueefhorizon of
H macro-actions is

O(AI™ NI ?(NsD?+ D% + jATNS LD °C): (64)
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Algorithm Computational Complexiy
PBD with Analytic Expected Reward O(JAjH NS 2(NsD?+ D3) + jAFNY LD 3C) (Eqn. 64)
PBD with Arbitrary Reward Model O(AINNILD 3+ jAF NI LD ?) (Eqgn. 66)

Table 1: Computational complexity of selecting an action using PBD algorithnelasdly related
alternatives.D is the number of state dimensiorn%,is the macro-action forward search
horizon, and\s is the number of sampled beliefs. Slightly abusing notation, we also use
Ns to represent the number of sampled states, in the case of arbitrary revwdeds.

5.2.4 GOMPLEXITY OF PBDWITH ARBITRARY REWARD MODELS

For arbitrary reward models it will not be possible to analytically compute tipeeed reward.
Instead the expected reward for each primitive actiomithin the macro-actiom can be approx-
imated by samplind -dimensional states and estimating the expected reward by averaging the
reward of each sampled stdfe.The cost of samplind\s states from a multivariate Gaussian is
anO(D?2 + NsD?) operation (from Equation 62). Assuming that calculating the reward foin ea
sample takes time linear in the state dimension, then sampling rewards adds amadditio

O(D3+ NsD?D) = O(D3(Ns +1)) (65)

cost to each primitive action within a macro-action, yielding a total complexity dd PBwnning
with reward sampling of:

O(GAI"NILD 3+ jA NI LD 2): (66)

6. Experimental Results

In this section we test our algorithm on planning under uncertainty probl&hesPBD algorithm
assumes that the transition models of the problem domains can be approximlatediaGaussians.
Our results on problems inspired by two different research communitiestisc exploration from
the POMDP literature (Smith & Simmons, 2005) and target monitoring from theose@source
management domain, suggest that numerous domains do satisfy this assuiistiorgenerally,
using a linear Gaussian dynamics models is a common approximation in the cootrotauaity,
and has been used to approximate even very complex dynamics such agdtwogical changes
involved in glucose control for diabetics (Patek, Breton, Chen, Solo&dtgvatchev, 2007).
Despite the different origins and state space representations of the dblemis that we will
shortly present results for, they both involve reasoning multiple steps intéuthes in order to
make good decisions in a very large domain. Our PBD algorithm outperfotisting approaches
in both settings. We also demonstrate our algorithm in a target monitoring prairiean actual

15. Note that if the rewards are bounded, for a givemd , sampling a suf cient number of samplés = f(; ),
guarantees the estimate of the expected reward of a primitive action-gase to the true expected value, with
probability at leastl. . The proof of this is a simple application of Hoeffding's inequality (196B)Ns is set
such that the estimated reward of each primitive actiop islose to the true expected primitive action reward with
probability atleast -, then the triangle inequality and union bound guarantee that the expewted i&f the entire
lengthL macro-action is-close to the true expected reward for the macro-action with probabilitastle
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helicopter platform, underscoring the applicability of our algorithm to realldvdomains. In all
results the macro-action search horizdrwas chosen empirically given computational constraints,
as is common in forward search approaches. We explicitly explore therpeafice changes as the
search horizon is varied in Table 3. We did not use a domain-speci c estohalbe future node
value of search tree leaf nodes: in some domains it may be easier to specify-actions than a
heuristic value function, and a side bene t of PBD is to be able to ef ciendlgirsh to suf cient
depths such that a heuristic is not required.

6.1 Generic Baselines

In both problems we compare the PBD algorithm to state-of-the-art agpredmm the relevant
research community — POMDP planners and sensor resource manageggoeeithms for the sci-
enti ¢ exploration and target monitoring problems respectively.

To fully examine the impact of analytically computing the posterior distribution bediefs,
we also constructed a variety of algorithms that do not currently exist in thatlite. These algo-
rithms are given access to the same hand-coded macro-actions as #ubbg ttee PBD algorithm.
We rst constructed comparison algorithms which use a macro-action fdreé@arch but sample
observation trajectories rather than working with a posterior distribution logkefs. Sampling
observation sequences produces a particle approximation of the resli#tirigution over beliefs,
thereby providing a baseline algorithm that does not use an analyticsegpation of the posterior
belief distribution. These algorithms are referred to as the macro-actiortdg81AD) algorithm
when the underlying state space is discrete, and the macro-action costiM&) algorithm
when the state space is continuous.

We also implemented an of ine point-based POMDP solver that was givassado the macro-
actions used by the forward search algoritffthsSpeci cally, we modi ed the state-of-the-art
POMDP planner SARSOP (Kurniawati et al., 2008) algorithm from the Apijpnate POMDP Plan-
ning (APPL) Toolkit’ and incorporated macro-actions to guide the sampling of belief points that
are used for the point-based value backups. Instead of the SARSORHatgusing performance
bounds to guide the sampling of the point-based beliefs, the modi ed SAR&fHRtAM uses a
macro-action and a sampled, same-length observation sequence taeyaddiional point-based
belief samples. This implementation is also a modi ed version of the MiGS (Kurriiaataal.,
2009) by the same authors. However, due to the of ine, point-basedeatuhis modi ed algo-
rithm, we were only able to evaluate the algorithm on two of the ve problem dosnased in this
paper.

Finally, we considered an experimental comparison to an open-loop ne@fdRBD, in which no
conditioning on the received observations is ever performed; howaitel experiments suggested
that this variant performed very poorly in our domains of interest, and esalial not explore it
further.

6.2 Rocksample

The scienti ¢ exploration RCKSAMPLE problem is a benchmark POMDP problem proposed by
Smith and Simmons (2005), and subsequently extended to the FieldVisior&oplsS(FVRS)

16. For a formal discussion of the differences between the of inetdeaised and online forward search POMDP algo-
rithms, we refer the reader to the survey paper by Ross et al. (2008a)
17. Approximate POMDP Planning Toolktttp://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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(a) ISRS(8,5) (b) SARSOP policy (c) PBD policy

Figure 5: Information Search Rocksample (ISRS) problem. (a) Initiab@mdl problem state. An
agent (pink square) explores and samples rocks (circles) in the wHde circles cor-
respond to rocks with positive value, black otherwise. Yellow squarésdtallocations
of the rock information beacons. The blue sidebar is the exit region. Reslilndicate
paths taken by an agent executing the (b) SARSOP and (c) PBD policiese®\that
the SARSOP policy only explores rocks and not the beacons; it caeaattsfar enough
ahead to model the value of the beacons. In contrast, the PBD plan visisaberts and
then heads directly for the high-value rocks.

problem by Ross and Chaib-draa (2007). Initial experiments in theseidsnexealed that search-
ing only to a shallow depth was suf cient to obtain good policies. As our isteiein domains
which require long-horizon lookahead, we created a new variant ORtheKSAMPLE problem
called the Information Search Rocksample (ISRS) problem, shown in Figayeln ISRS an agent
explores and sampldsrocks in an  n grid world. The positions of the agent (pink square) and
the rocks (circles) are fully observable, but the value of each rooid@r bad) is unknown to the
agent. At every time step, the agent receives a binary observation ghline of each rock. The
accuracy of this observation depends not on the agent's proximity to the themselves but on
the agent's proximity to rock information beacons (yellow squares), ehethich correspond to
a particular rock (for example, information beacons could be mountain tepotier a particu-
larly good view of a far off geologic formation). A key characteristic oRSthat is not present in
RocksAMPLE or FVRS is that the rock information beacons are not at the same locatidhs as
rock themselves. Unlike previousoRksAMPLE formulations, information gathering and reward
exploitation require different actions in ISRS.

The agent gets a xed positive reward for collecting a good rock (whitded, a negative reward
for collecting a bad rock (black circle), and a smaller positive rewaraxiting the problem (the
blue sidebar on the right). A discount factor= 0:99 encourages the agent to collect rewards
sooner. All other actions have zero rewards.

The observation model is a Bernoulli distribution with the noise of the distribsibahed with
the distance to the beacon, such that:

( k ri RB ko

_ 05+ (si 052 Do zir =1
p(zitjsi;ri; RBj) = K ri RB ik (67)
05 (si 0:5)2 Do ziy =0
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where z; is abinaryf O or 1g observation for the value of the roclat timet,
Si is the true valud O or 1g of the rock,
re is the agent's position at time

RB; isthe location of the information beacon associated with rock
Dy is atuning parameter that controls how quickly the accuracy of the oligsrsa
decrease with greater distance between the agent and the beacon.

For example, at an information beacon, the agent, with absolute certaiteivee an observation
that matches the true value of the corresponding rock, whereas wheistiduece between the agent
and the beacon is in nite, the agent receives an “accurate” obsemvwatib 0.5 probability.

All variants of the RRCKSAMPLE problem, including our new ISRS problem, are formulated
with discrete state, action and observation sets. To allow the use of our RBMIAC algorithms,
we approximate the agent's belief of each rock's value as a Gaussiaibwtistn over the [0,1]
state space, and take advantage of the efKF presented in Section 4egergghe RCKSAMPLE
problem’s Bernoulli observation model (Equation 67: see Appendix Biébails).

Each macro-action is a nite, open-loop sequence of primitive actionstHeOROCKSAMPLE
problem, there are ve primitive actions: single steps in the four cardinactions and the rock
sampling action. Recall that the agent's position is fully observable and itsa@re deterministic.
Using domain knowledge, the macro-actions considered from a particelief btate are macro-
actions that, given the agent's current position, consist of a sequdraetions that enables the
agent to move to each rock, each information beacon, or to the neaitestheg results in2k + 1
macro-actions being considered for forward search at every beldg.nAs the agent operates in
a grid world, there may be multiple action sequences with the same, shortestdibstween two
grid squares: the macro-action considered is the one where the agddtmave as diagonally as
possible, so as to replicate the agent's shortest path movement in a costimapu In addition,
if the agent is currently on a rock (which is fully observable), additionatnmactions where the
agent rst collects the rock before executing one of2ke- 1 default macro-actions are considered,
resulting in twice as many macro-actions. The set of macro-actions theredoes with every
belief node'® For an ISRS problem with rocks in a8 8 grid world, the average macro-action
length was4:76, with a minimum and maximum macro-action lengthlaind12 respectively.

As the RocksAMPLE family of problems originates from the POMDP literature, we compared
our macro-action algorithms to existing state-of-the-art POMDP solversfagteipper-bound of
QMDP (Littman, Cassandra, & Kaelbling, 1995), the point-based of ineedteration techniques
HSVI2 (Smith & Simmons, 2005) and SARSOP (Kurniawati et al., 2008), asageRTBSS (Pa-
guet, Chaib-draa, & Ross, 2006), an online, factored, forwantBedgorithm. We also evaluated
a modi ed version of the SARSOP algorithm that was given access to thematm®-actions used
by the forward search macro-action algorithms. Since all approacladgdiimg our own, are ap-
proximations, we also include as an upper bound the value of the fully\aidemproblem.

Table 2 compares the performance of the different algorithms in the |Sétepn. Each algo-
rithm was tested on 10 different initial conditions (which rocks were highediand which were
low valued), and each scenario was tested 20 times. The HSVI2 and SAR§aQrithms were exe-
cuted of ine for a range of duration'$,while the forward search algorithms were allowed to search

18. However, if two belief nodes have the same agent position, theioraations will be identical.

19. The of ine execution durations for both HSVI2 and SARSOP werasen empirically. HSVI2 was able to search
for solutions to the ISRS[8,5] problem for 1,000s of ine before rungnout of memory. It was found that the values
computed by SARSOP remained constant after 25,000s.

549



HE, BRUNSKILL, & Roy

ISRS[8,5]
Avg rewards | Online Ofine
time (s) | time (s)

QMDP 1.11 0.15 0.0001 | 3.03
HSVI2 6.78 0.62 0.051 1000
SARSOP 8.46 0.70 0.070 25000
SARSOP(macros) 18.78 1.59 | 0.015 1000
RTBSS (d5, s10) 9.78 0.49 17.64 0
RTBSS (d7, s2) 12.41 0.46 | 3.28 0
RTBSS (d10, s1) 1539 045 | 7.0357 | O
MAC (d3,s50) 13.68 0.65 | 15.39 0
MAD (d3,s50) 15.88 0.54 | 4.81 0
PBD (d3,s50) 14.76 0.57 | 1.26 0
Fully observable 21.37 N.A. N.A.

Table 2: ISRS results. HSVI2 and SARSOP were executed of ine fange of durations. For
the forward search algorithms, the numbers in brackets representited skepth (d) and
number of posterior beliefs obtained (s) at the end of each action/metioora Online
time indicates the average time taken by the planner to return a decision atievesgep.
Standard error values are shown.

out to pre-de ned depths. Here, depth refers to the primitive action dagtie RTBSS algorithm,
and the macro-action depth in the macro-action algorithms (MAC, PBD and Mia2ddition, a

pre-de ned number of samples were used to obtain posterior beliefsafigr action/macro-action.
We abuse notation here slightly by using samples to refer to observationsRTB®&S algorithm,

observation sequences in the MAD and MAC algorithms, and to samples feoposterior belief
distribution in the PBD algorithm.

We also attempted to allow the RTBSS algorithm to search to the same primitive acich se
depth as the macro-action algorithms do on averagefité. 3 14, by reducing the number of
observations that are sampled per action. We found that even if onlyetvali®n was sampled per
action, RTBSS could only achieve a search depth of 10 in reasonableitatiop time.

The macro-action algorithms do signi cantly better than most of the other meadhsolvers.
Figure 5(b) and 5(c) compare the policies generated by the SARSORtlalg@nd the PBD algo-
rithm in the ISRS problem. Both SARSOP and HSVI2 explore parts of the [sgede guided by
an upper bound on belief-action values. A long lookahead is requiredliae that visiting beacons
and then rocks has a higher value that visiting rocks, so many iterationtharedore substantial
computation time is required for SARSOP and HSVI2 to sample the beliefs that adllteethem
computing a higher-value policy. In the considerable of ine computation tirogiged, both SAR-
SOP and HSVI2 did not discover that it is valuable for the agent to makwarde the information
beacons before approaching the rocks. Instead, they directlyagptioe rocks and make decisions
based on the noisy observations that are obtained due to the large distand&e information
beacons.

The RTBSS algorithm does reasonably well when it is able to search deele once again
emphasizing the need for planning under uncertainty algorithms to seaiotofthe future in order
to perform well. Nevertheless, when the same amount of online planning tivelistde, the MAD
algorithm still outperforms the RTBSS algorithm. Macro-actions allow the algostto uncover
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Depth 1, Samples 50 Depth 2, Samples 50 Depth 3, Samples 50 Depth 4, Samples 20
Avg Online Avg Online | Avg Online | Avg Online
rewards | time(s) | rewards time(s) | rewards time(s) | rewards time(s)
MAC | 461 0 0 9.63 0.77 | 0.022 13.68 0.65| 15.39 15.07 1.62| 660.50
MAD | 461 0 0 7.51 0.84 | 0.0083 | 15.88 0.54| 4.81 17.43 0.78| 225.74
PBD 461 0 0 7.73 0.77 | 0.002 14.76 0.57| 1.26 15.82 0.77| 75.06
Table 3: Performance of macro-action algorithms with different macro+ackpth on ISRS. At

depth 4, a smaller number of posterior beliefs were sampled for computatiasains.

the potential value of moving to an information beacon without incurring the otextipnal cost of
primitive-action forward search; this allows our macro-action forwaedd®approaches to perform
better than prior primitive-action approaches. Figure 5(c) shows thBDadgent's policy involves
visiting some of the information beacons to gather information about which abtes are good
(white circles), before traveling to those rocks to sample them. In this domakl) tbes better
than the PBD algorithm since the problem speci cation is made up of discrats st@hereas the
parametric approaches must approximate the world models during planniaddition, the fully-
factored nature of the problem domain, where the state of each rockisahapendent, keeps the
computational requirements of the MAD algorithm relatively small.

Similarly, when the SARSOP algorithm was modi ed to incorporate the haneédadacro-
actions, this of ine, point-based algorithm performed much better than egisfime approaches,
including the SARSOP algorithm without access to macro-actions. This reseihphasizes that
well-designed macro-actions can be very valuable in generating gooegatigartially observable
domains. However, not all problem domains, especially those with larg®réal domains that are
of interest in this paper, can be represented and solved in an of ineenzaomd we shall shortly see
the bene t of PBD for such settings.

We also performed additional analysis on the three macro-action forveardts algorithms.
Table 3 compares the different rewards obtained by the macro-actiaitlatge for different macro-
action depths, as well as the time taken by the planner to return a decisiceratiewe step. The
sharp performance jump that occurs when the macro-action searchislémtheased from 2 to 3
emphasizes the need to search to a longer horizon in the ISRS problera agjood policy can
be generated. However, the computational cost of the algorithms alsasesrexponentially with
the macro-action search depth. This table also illustrates the small loss impenfte induced by
approximating the discrete problem with the continuous representation af itke or PBD, and
the substantial increase in computational speed using PBD.

Next we examine the relative performance and computational cost of MBD,and MAD, as
the number of samples changes (Table 4) up to a search depth of 3. tRatélle PBD algorithm
samples from the posterior belief at each node in the search tree, dudtesahe expected future
reward of subsequent macro-actions for each sample. Differeintiegf the posterior belief space
may plan to use different subsequent macro-actions, allowing the plamimaplicitly condition
its plans on the received observations. However, the sampling useditmpahe posterior belief
space and assign different actions to different beliefs introducesiraesof approximation error
and additional computational complexity. As predicted by our earlier compo#tmmplexity
analysis, PBD scales best of the three algorithms as the number of sampéesas; since it does
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5 Samples 50 Samples 100 Samples 500 Samples
Avg Online | Avg Online | Avg Online | Avg Online
rewards time(s) | rewards time(s) | rewards time(s) | rewards time(s)
MAC | 12.76 0.54| 0.15 13.68 0.65| 15.39 | 12.47 0.70| 58.90 | 12.94 2.57| 1732.52
MAD | 15.31 0.52| 0.056 | 15.88 0.54| 4.81 15.57 0.66| 20.72 | 16.32 2.18| 552.64
PBD | 12.92 0.57| 0.035 | 14.76 0.57| 1.26 14.56 0.59| 4.52 15.36 1.15| 108.64
Table 4: Performance of macro-action algorithms in ISRS up to depth 3 wiireliff numbers of
samples.
(a) ISRS(15,6) (b) ISRS(100,30)
Avg rewards | Online | Ofine Avg rewards | Online
time (s) | time (s) time (s)
SARSOP 9.43 1.03 | 0.00006| 10000 SARSOP N.A. N.A.
SARSOP(macros)i11.42 0.49 | 0.00006| 900 SARSOP(macrosN.A. N.A.
RTBSS(d7,s2) | 8.37 0.55 | 4.98 0 MAC(d3,s5) 42.64 3.78 | 310.05
RTBSS(d10,s1) | 9.35 0.65 | 1091 | O MAD(d3,s5) 51.70 3.46 | 101.92
MAC(d3,s20) 1594 092 | 7.01 0 PBD(d3,s5) 43.68 2.00 | 60.81
MAD(d3,s20) 1757 0.82 | 2.74 0 Fully obs. 66.61 N.A.
PBD(d3,s20) 17.00 0.83 | 0.58 0
Fully obs. 30.95 N.A. N.A.

Table 5: Performance on larger ISRS problems

not have to perform belief updates along each sampled trajectory expliciggneral, performance
improves with more samples, although the improvement was not statistically sighircthe ISRS
problem. However, when a decision-making under uncertainty problguoires a large number of
posterior beliefs to be sampled after every macro-action, the PBD algorimits in consistently
faster performance for the same number of samples. Once again, MA® siaht performance
edge due to the approximation of the discrete ISRS problem with continuoabbegrimplicit in
PBD, but the difference is again not signi cant.

The macro-action forward search nature of our algorithm also allows ssate to much larger
versions of the RcksamPLEproblem, since unlike of ine techniques, it is unnecessary to generate
a policy that spans the entire belief space. We compared the algorithms omlditiorzal ISRS
problems — a 16 by 16 grid with 6 rocks, and a 100 by 100 grid with 30 rocks.

Both problem domains were too large for most of the benchmark solversvératoriginally
used for comparison, though the SARSOP and RTBSS algorithms could bariemikd for the
ISRS[15,6] problem domain. Table 5(a) shows the performance of &R&d the forward search
algorithms for the ISRS[15,6] problem domain. The modi ed SARSOP algoritiab incorpo-
rates macro-actions ran out of memory after computing a policy of ine f@s9®ecause the for-
ward search macro-action algorithms are better able to concentrate compltadgmurces on the
reachable belief space from the agent's current belief, the forweatk macro-action algorithms
perform much better than both the SARSOP algorithm and the modi ed versinnitorporates
macro-actions. Similarly, while the forward search single-action RTBSSitigoperformed rea-
sonably well on the ISRS[8,5] problem if the search depth was suf cidattye, the algorithm was
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Figure 6: TARGETMONITOR problem. A helicopter must track multiple targets moving with noisy
dynamics. The eld-of-view of the agent's sensor (shaded circle)eiases with the
agent's altitude.

unable to search suf ciently deep in reasonable time on the larger ISE&d®blem, resulting in
poorer performance than the forward search macro-action algorithms.

We further implemented the macro-action algorithms on a ISRS[100,30] praderain, which
far exceeds any problem that can be solved by a traditional POMDPr sioleleiding the modi ed
SARSOP algorithm that incorporates macro-actions. Table 5(b) comfieressults of the three
macro-action algorithms to the fully observable value, which provides a spjm¢r bound of the
maximum possible reward for the problem. Such large problems also undetke value of having
macro-actions to limit the branching factor of the forward search.

6.3 Target Monitoring

We next consider a target monitoring problem related to those studied inrtkergesource man-
agement literature (Scott, Harris, & Chong, 2009). In this problem (Ei@)y a helicopter agent
has to track multiple targets that are moving independently with noisy dynamieshéllcopter
operates in 3D space, while the targets move on the 2D ground plane. lldupter is equipped
with a downward-facing camera for monitoring the environment, and if att&gethin the eld-
of-view of the camera sensor, the agent receives a noisy obsereétiom location and orientation
of the target. We assume for simplicity that the observations of each taegehigue, allowing us
to ignore the data association problem that has been addressed etsewher

The noise associated with the agent's observation of a target deperide agent's position
relative to the target. When the helicopter is close to the ground it can ongnaba small re-
gion, but can determine the position of objects within that small region to a highdéaccuracy.
When the helicopter ies at a higher altitude, it can view a wider region of tivirenment, but its
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1 Target 2 Targets
Avg rewards Online time (s) | Avg rewards Online time (s)

Greedy -21.50 7.65 0.0657 -26.50 5.00 0.19
WT-Single 65.14 8.64 0.00075 -27.03 8.06 0.00068
WT-Macro 64.64 8.28 0.00076 -19.05 7.64 0.00042
NBO -5.80 7.92 0.051 -10.78 6.95 0.21
MAC(d2,s10)| 41.73 6.96 4.73 46.67 18.91 | 22.13
MAD(d2,s3) | 1.27 5.23 1.66 0.97 5.82 8.46
PBD(d2,s10)| 36.21 6.52 0.89 68.00 16.65 | 4.33

3 Targets 8 Targets
Greedy -18.00 7.15 0.46 -95.00 23.37 | 2.01
WT-Single -23.52 10.89 | 0.00080 -71.17 14.53 | 0.00063
WT-Macro -10.53 17.12 | 0.00037 -52.98 21.74 | 0.00025
NBO -8.27 8.84 0.63 -5.98 18.00 | 5.78
MAC(d2,s10)| 37.89 12.49 | 70.91 83.86 25.65 | 711.67
MAD(d2,s3) | -1.86 5.19 26.96 27.36 14.74 | 432.13
PBD(d2,s10)| 55.78 13.84 | 13.02 120.80 25.77 | 132.50

Table 6: ARGETMONITOR Results. Run for 200 time steps.

measurements will be less precise. Similarly, the closer the helicopter is to alfzartarget, the
more accurate the helicopter's observation of that target is expected Relecting this intuition,
we use a Gaussian observation model where the noise covariance stiarfuwf the position of
the helicopter and target: details of this sensor model are provided in App€nOne desirable
attribute of our sensor model is that if the helicopter is very uncertain abi@uget's location, even
if the helicopter is close to the target's mean location, a single observation iglyrttiklocalize the
target. If the target location is very uncertain, there is a low probability tleatafyet is within the
helicopter's eld of view.

The agent's pose is fully observable, though the actions that it takeslgsztto a small amount
of additive Gaussian noise. As a result, unlike tt@dRsAMPLE domains, the open-loop nature of
macro-actions means that the planner cannot perfectly predict the \&Ipioke at the end of the
macro-action. Each target's motion is determined by its translational and rativigocities. The
model provides the agent with a prior over these velocities, but at everystepethe target's true
velocities are additive functions of these xed input controls and Gangsigse. In the parametric
formulation, the agent maintains a Gaussian belief over each target's staie, @der to compare
MAD, we discretize the continuous state spaces of the agent's and tgugsions, and maintain
a probability distribution over each discrete target state. Due to computati@mabry constraints,
for a100m by 100m by 20m target monitoring problem in the y andz directions, we were limited
to a discretization witiOm resolution in thex; y directions,5m in thez direction, andd5 angular
resolution.

We focus on a particular decision-theoretic version of the sensorn@smanagement problem,
where at each time step the agent must decide if each of the targets is insideaanf interest.
These areas of interest are indicated by the yellow squares in Figuhe&gEnt receives a positive
reward if it successfully reports that a target is in an interest regioagative reward if it wrongly
decides that the target is in the region, and no reward if it decides thatgfet inot in the region,
regardless of the target's actual state. Small costs are incurred fogéin€ésamotion. We call this
the TARGETMONITOR problem.
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Given the current location of the agent, macro-actions were genergtedniputing the se-
guence of actions that will enable the agent to move to a particular altituder®vereans of each
target belief. For a particular desired destination, a macro-action is ootetrby rst comput-
ing the shortest path between the agent's current and desired locatibthen dividing this path
into primitive actions based on the maximum length of each primitive action. We albaled a
hovering macro-action that consists of hovering at the agent's cuoeation for four time steps.
Note that the agent's current location is fully-observable, and for thegse of generating macro-
actions, we assume that the primitive actions are noise-free. Hencedompemitive action, the
helicopter is assumed to move by the mean expected change. Similar todtiksRvPLE problem,
although the macro-actions are generated according to a policy that reliesm@min knowledge, the
macro-actions themselves are evaluated in the forward-search algorgshopea-loop sequences
of primitive actions. We compare the forward search macro-action algorithragange of intu-
itive strategies and prior approaches. The rst algorithm is the grewdtegy, which returns the
primitive action that results in the largest expected reward in the next steméxt two approaches
are the Worst Target (WT) policies, which are hand-coded policiesagéling to the target that
has the largest uncertainty of all the targets being tracked. The intuitiontiththagent's goal in
general is to localize the targets in the environment. The two algorithms diféedban whether
the agent chooses a new target to travel to after each time step (WT-simglte)plans only after
it has reached the target it had initially chosen (WT-macro). Finally, we eo@dpour algorithm to
the nominal belief optimization (NBO) algorithm proposed by Scott, Harris dm@h@ (2009). The
NBO algorithm also assumes a Kalman Iter model for the target monitoring pmgbibeit rather
than considering the entire distribution of posterior beliefs, only the most Ig@dyerior belief af-
ter an action is considered. In this algorithm, the most likely posterior belief fdaussian belief
update is given by the posterior mean without incorporating any obsamgatimd the covariance
given by linearizing about the most likely mean at each step. Although thmakigigorithm uses
an optimization approach to search for action sequences, here we madiBi@ algorithm by
adopting a forward search approach, evaluating each macro-acted ba the most likely poste-
rior belief?0

Table 6 presents results for the RGETM ONITOR problem, comparing the algorithms in sce-
narios with different number of targets. These results demonstrate thRBibealgorithm, with
its closed form representation of the distribution of posterior beliefs afteiction, nds a signi -
cantly better policy than alternate approaches. Figure 7 demonstratesa pglicy executed by
the PBD algorithm. The agent begins in the middle of the grid world, and apipesaa target at a
high altitude (Figure 7(b)), maximizing the likelihood of localizing that target.oifi@ of the targets
seem to be approaching a region of interest, the agent hovers in the gsitiendo conserve energy
(Figure 7(c)). When one of the targets may potentially be entering a regjimecest, the agent
focuses on that target, tracking it carefully to ensure that it knows whetarget is exactly in the
region of interest (Figure 7(d),(e)). The agent subsequently travalfigh altitude and repeats the
process of localizing another target with potential rewards (Figuré. 7(f)

Considering the entire distribution of posterior beliefs, rather than just tlx@man likelihood
posterior belief, is valuable because the agent is able to reason thatstlzep®ssibility that the

20. As noted by the authors, the NBO algorithm focuses on a new methagpooximating the Q-value, rather than on
the optimization techniques. While they adopt a generic search appagnérforming the optimization, the authors
also point to forward-search POMDP algorithms as good search tegwmig which their Q-value approximations
could be incorporated. Our use of forward search with the NBO Q-\agbpeoximation does not affect the results.
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(d) (e) (®

Figure 7: Snapshots of the PBD policy being executed. The black cirdlzaiied the eld-of-view
of the agent's sensor, which is directly proportionate to the agent's heigig. size of
the error ellipses indicate the agent's uncertainty associated with eachategeh time
step. The agent alternates between ying at a high altitude to maximize the likdlisfoo
observing targets (b),(f) and focusing on a single target that is neaftiared an area of
interest (e).

target could be within a region of interest. In contrast, the NBO approalshconsiders the most
likely posterior belief, and will seek to localize the target only if the mean of itebappears to
be heading into a region of interest. While the consideration of the entire disbrbof posterior
beliefs necessarily incurs greater computational cost, we demonstraigionSe4 that we are able
to track two targets in real-time using an implementation of the PBD algorithm thatdtdsean
optimized for speed.

Table 6 also shows that because the PBD algorithm directly computes theutiistribf poste-
rior beliefs after a macro-action, the computational cost of the PBD algor#tlsigni cantly lower
than the MAC algorithm. The MAC algorithm suffers a greater computatiorstl@®it generates
the set of posterior beliefs after a macro-action by sampling observatieisees and explicitly
performing belief updating along each sample trajectory. In addition, sedéie RRGETMON-
ITOR problem has a state space that is fundamentally continuous, the resolutiensiite space

556




EFFICIENT PLANNING UNDER UNCERTAINTY WITH MACRO-ACTIONS

(a) Our Quadrotor helicopter (b) Multiple cars being tracked(c) Helicopter tracking car through an
area of interest

Figure 8: TARGETM ONITOR demonstration with helicopter. The helicopter has to simultaneously
track two cars and report whenever either car enters an area ofintere

discretization that was achievable given computational memory constraiststianable to cap-
ture the inherent characteristics of the target monitoring problem, resultthg jpoor performance
of MAD in the TARGETMONITOR problem.

In the single-target case, we also observed the result that the PBIifatgdoes worse than the
hand-coded policy of the agent traveling to the target with the largesttairdgy (WT-single). When
the problem only involves a single target, such a policy equates to havingéne laover over the
sole target at every step, which is the optimal policy in the single target kasentrast, we observe
that the MAC and PBD algorithms return policies that result in the agent peaibdleaving the
targetto y to a higher altitude, resulting in greater noise in the observatioths@arresponding loss
of rewards on average. By restricting the MAC and PBD algorithms to plgrwitihh macro-actions,
we restrict the set of plans the agent can consider in order to seagplerdeather than a shorter
conditional plan that is conditioned on the observations after paafitive action. Even though
the agent re-plans after every time step, without this conditional plan,em agecuting the MAC
or PBD algorithms will execute the “safe” policy and y to a higher altitude, whicaximizes the
likelihood of keeping the target well-localized when it is unable to condition iteas based on
subsequent observations. This example highlights the trade-off we ngat@nbidering a smaller
class of policies (those that can be expressed as chains of macrcsactionpared to the full
policy set. While in simple problems, such as a single-targ&GETM ONITOR problem, the policy
restriction can clearly be a limitation, our macro-action algorithms perform signily better than
the other benchmark approaches when there are multiple targets, inissé¢natare arguably more
complicated and require more sophisticated planning algorithms.

6.4 Real-world Helicopter Experiments

Finally, as a proof of concept, we demonstrate the PBD algorithm on a livenitiestion of the
TARGETMONITOR problem. A motivating application for this monitoring problem is our involve-
ment (He et al., 2010a) in the 1st US-Asian Demonstration and Assessihdicto Aerial Vehicle
(MAV) and Unmanned Ground Vehicle (UGV) Technology (MAV'08 contiien). The mission
was a hostage rescue scenario, where an aerial vehicle had to guiee ginits to a hostage build-
ing while avoiding an enemy guard vehicle. Our aerial vehicle therefatddplan paths in order
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Figure 9: The helicopter (blue/red cross) uses an onboard laseresdariocalize itself. A down-
ward pointing camera is used to observe the ground targets. In this theecamera
image from the onboard camera is projected onto the ground plane.

to be able to monitor the different ground objects and report wheneyeofaihem arrived at an
area of interest.

We demonstrate this scenario on an actual helicopter platform monitoring multipiedyvehi-
cles in an indoor environment (Figure 8b). In previous work (He, ®ten& Roy, 2008; Bachrach,
He, & Roy, 2009), we developed a quadrotor helicopter (Figure 8ajstmpable of autonomous
ight in unstructured and unknown indoor environments. The helicopgesa laser range nder to
localize itself in the environment.

We mounted a downward-facing camera to make observations of the tairgye.t&get detec-
tion is not the focus of this paper, each of the ground vehicles had arkraigtinctive color, to
be detected and distinguished easily with a simple blob detection algorithm. Ge/delibopter's
position in the world and the image coordinates of the detected object, we bleraecover an
estimate of the position and orientation of a target observation in globalicated. The helicopter
only received an observation of the target when the target was withinathera's eld-of-view,
and although the helicopter platform hovered relatively stably, slight osoii& persisted, which
resulted in noisier observations when the helicopter was ying at higherddituHence, the he-
licopter had to choose actions that balanced between obtaining moretacaisarvations at low
altitudes and a larger eld-of-view by ying high.

Two ground vehicles were driven autonomously in the environment witim-bpmp control,
and the helicopter had to plan actions that would accurately localize bothstarge replicate

the TARGETMONITOR problem, we marked out three areas of interest where the helicopter had to
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@ (b) (© (d)

Figure 10: Bird's eye-view snapshots of the helicopter's trajectoy)(leased on policy generated
by the PBD algorithm. The helicopter (blue/red cross) alternates betwsenvatyy the
white (b,d) and blue (c) cars in order to accurately report when eitmés aaan area of
interest. The area of the eld-of-view of the agent's camera sens@esdirectly with
the height that the agent is ying at.

# Target entry detections # True target entries Flight time (s) | Dist. traveled (m)
WT-Single 1 7 484.15 243.36
NBO 1 4 435.25 247.01
PBD 4 6 474.64 282.51

Table 7: Performance of algorithms on real-world helicopter experimemurgi truth was found
using an overhead video camera.

predict at every time step if the targets were within those areas (FiguraN&capplied the PBD
algorithm to plan paths for the helicopter that maximized the likelihood that it carddrately
report whenever a target is in an area of interest. However, ratheistrading open-loop control
actions to the helicopter, as we did in the simulation experiments, for safetynea® closed the
loop around the position of the helicopter, sending desired waypoints thaianted the helicopter
to navigate to. The helicopter's true state in the world was actually partiallyreddse, and the
helicopter had to rely on an onboard laser scanner to localize its positioneéméirenment.

Figure 9 shows a 3D view of the helicopter as it monitors and reports on thgdos of the
ground targets. As the helicopter ew around the environment, it obtaibhedr@ations of the target,
which were then used to update the agent's belief of the targets. Figuretidgs snapshots of
the helicopter executing a plan that is computed online by the PBD algorithm. éllfcefter ex-
hibited similar behaviors to those that were observed in the simulation experirfi@etelicopter
alternated between the two targets in the environment to report when eitpetriaas in an area of
interest. When the agent had a large uncertainty over a particular tdogeitson, it would also y
to a higher altitude in order to increase its sensor eld-of-view, therebyimmaig the likelihood
that it will be able to re-localize the targets. A video of the complete system imaistiavailable
at: http://groups.csail.mit.edu/rrg/index.php?n=Main.Vi deos .
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As a coarse measure of achieved reward, we evaluated how well thegteticunning PBD
did at monitoring when a target entered an area of interest, and compévetiet WT-Single and
NBO algorithms. The ground truth of the number of times the targets actuallyedrite areas of
interests in each trial was found by using a video camera mounted ovexheaelthe environment.
Table 7 indicates that the PBD algorithm did a much better job of monitoring theisapgsitions
than both the WT-Single and NBO algorithms. In particular, we observedtiatthe WT-Single
and NBO algorithms seldom took advantage of the ability to increase the agenssr eld-of-
view by having the agent y to a higher altitude. An agent applying these tgarithms therefore
had a higher probability of losing track of the targets completely.

7. Related Work

Decision-making under uncertainty when the states are partially obseisabtest commonly dis-
cussed under the Partially Observable Markov Decision Process (FRQM@nework, though this
problem has also been analyzed in other research domains under similampions. While it is
beyond the scope of this paper to provide a comprehensive surveMDIP techniques, point-
based methods such as HSVI2 (Smith & Simmons, 2005) and SARSOP (Katnédal., 2008) are
often considered state-of-the-art of ine methods, leveraging the pigse and convex aspects of
the value function to perform value updates at selected beliefs. Thpszaapes assume a discrete-
state representation, but of ine approaches that use parametricespations have been proposed
for continuous-valued state spaces (Brooks, Makarenko, Williams, gabttWhyte, 2006; Brun-
skill, Kaelbling, Lozano-Perez, & Roy, 2008; Porta et al., 2006). Haeg Poupart (2005) have
also addressed continuous observation spaces by nding lossl¢isi®paiof the observation space.
Recent work by Bonet and Geffner (2009) suggests that alternaielpsed approaches that use
tabular representations of the value function may also be competitive withgwiot-based ap-
proaches which used-vector representations, and this alternate representation may be foseful
continuous domains. The ideas in this paper are more closely related to theflmdine, forward
search POMDP techniques that only compute an action for the currertt ldlieh were recently
surveyed by Ross et al. (2008a).

Macro-actions have been considered in depth within the fully observahik&dM decision pro-
cess community, and are typically known as “options” (Sutton et al., 1999)osed as part of
a semi-Markov decision process (Mahadevan, Marchalleck, Das, €a%,01997). These prior
formalisms for temporally-extended actions include closed-loop policies #ratsp until a termi-
nation state is achieved. It would be interesting to explore in the future hae tieher notions of
macro-actions could be incorporated into our approach.

Several of ine POMDP approaches use macro-actions such as tfiddeeau, Gordon, and
Thrun (2003b), Hansen and Zhou (2003), Charlin, Poupart, amod&H2007), Foka and Tra-
hanias (2007), Theocharous and Kaelbling (2003) and Kurniawati. 2009). Pineau et al.'s
PolCA+ (2003b) algorithm uses a hierarchical approach to solvingetesastate POMDPs. Sim-
ilarly, Hansen and Zhou (2003) propose hierarchical controllersetialbit a user-speci ed hier-
archy for planning, while Charlin et al. (2007) provide a method for autmaiy discovering a
problem hierarchy. Yu, Chuang, Gerkey, Gordon and Ng (200&)ige an optimal algorithm for
planning if no observations were available. Foka and Trahanias'{Z@0ution involves building
a hierarchy of nested representations and solutions. Their focus isaetd-state problems, par-
ticularly navigation applications. Theocharous and Kaelbling's (2003)elis-state reinforcement
learning approach samples observation trajectories and solves forpbetea reward of a discrete
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set of belief points using function approximation. Kurniawati et al. (20@@gntly used macro-
actions to guide the sampling of belief points for use in an of ine point-basedBP solver.

However, these prior macro-action POMDP approaches compute a valct@oh off-line, are
not aimed at scaling to very large domains, and will struggle in the environroensidered in this
paper. An exception to this is the work by Hsiao and colleagues (2008) 2@1io used a form
of macro-actions for those robot manipulation tasks that involve a largesgtate. The focus of
their work is on robust manipulation under uncertainty, and their work oogiclers a very short
horizon of action trajectories. Except for the work by Kurniawati et 2000), all these macro-
action POMDP approaches, like our PBD algorithm, assume the macro-aatmpsovided by a
domain expert.

In the sensor resource management domain, planning under uncertehrigtees are used in
the context of planning sensor placements to track single or multiple targetgingxalgorithms
often adopt a myopic, or greedy strategy when it comes to planning (Kr&uSuestrin, 2007),
but notable exceptions include the work by Scott et al. (2009) and Kezuéiero lll, Kastella,
and Chang (2004). Kreucher et al. describe a multi-target trackinglggm where non-myopic
sensor management is necessary for multi-target tracking. The auieoasparticle Iter approach
to represent the agent's belief of the target's location, and seek to titspghat will result in the
greatest KL divergence in density before and after the measuremerniooR@head more than
one action, this algorithm uses Monte Carlo sampling to generate possibleaimseoutcomes.
They also provide an information-directed path searching scheme toeréiticomplexity of the
Monte Carlo sampling, as well as value heuristics that will help direct theclsedt is possible
that some of their insights could be used in combination with our macro-actionufation to
strengthen both approaches. In the experimental section we comparagpooach to the work by
Scott et al. (2009), who directly formulated target tracking as a POMPpeoposed the Nominal
Belief Optimization (NBO) algorithm that computes the most likely belief after anaétiodeeper
forward search. In contrast, our algorithm explicitly computes the enttrefggossible posterior
beliefs after a macro-action. Recently two groups (Erez & Smart, 2010; Péaitake, Lozano-
Perez, & Kaelbling, 2010) have independently proposed an apptbathes in the middle of this
spectrum: beliefs are updated by assuming that the most likely observatieceised, but the
variance is increased. In contrast, our approach represents tatesallting belief may be fairly
peaked, but the mean of the beliefs may be spread out. This more completgergption may be
advantageous if there are sharp changes in the reward function.

As stated in the introduction, the nite-horizon forward search, act, @dplan strategy PBD
follows can be seen as an instance of the Model Predictive Control/Recelbrizon Control
(MPC/ RHC) framework from the controls community. Examples of MPC anR#tlude the
work by Kuwata and How (2004), Bellingham, Richards, and How (2082{l Richards, Kuwata,
and How (2003). A special case of RHC control is Certainty Equiva&untrol, or CEC (see Bert-
sekas, 2007 for an overview). In fully observable systems, CECasstimes all stochastic opera-
tions (such as transitions) take on their expected value, and then solniés-&orizon deterministic
control problem. CEC may be applied in partially observable environmentgdiysampling an
initial state from the belief state. Though CEC can be very ef cient in lag@ains, a key limi-
tation of its use in partially observable environments is that a CEC-style contnallenever take
information-gathering actions. Returning to the generic class of MPC apppes, to our knowledge
no prior model predictive controllers have used macro-actions nofajeaa the notion of a pos-
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terior distribution of beliefs, which enables our PBD approach to scalede lamcertain domains
where a multi-step lookahead is required.

8. Conclusion

In this paper we have presented the Posterior Belief Distribution algorithnD iBB forward-
search algorithm for large (consisting of many variables, each of wkinhitake on many values)
partially observable domains. PBD analytically and ef ciently computes thdtieg distribution
of posterior belief states possible after a sequence of actions. This dlevedmputational cost
of evaluating the reward associated with a macro-action to be tractable, whitdverage to en-
able longer horizon lookahead search during online planning. We hagemted theoretical and
experimental results evaluating the performance and computational cmst mfacro-action algo-
rithms. Our algorithms were applied to problem domains that span multiple resgaranunities,
and consistently performed better than prior approaches in large domiicts rgquire multi-step
lookahead for good performance. Finally, we demonstrated our algodthm real robotic he-
licopter, underscoring the applicability of our algorithm for planning in meatid, long-horizon,
partially observable domains.
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Appendix A: Exponential Family Kalman Filter

Building on statistical economics research for time-series analysis of mosian observations (Durbin
& Koopman, 2000), we present the Kalman Iter equivalent for systems kividar-Gaussian state-
transitions and observation models that belong to the exponential family abdigins.

The state-transition and observation models can be represented as:follows

St
P(zt) t)

Atst 1+ Brag+ "y, St 1 N(t 1 t1); "t N(O;Py) (68)
exp(zf « (0+ (z); t = W(s): (69)

For the state-transition moded, is the system's hidden stata, is the control actionsA; andB;
are the linear transition matrices, ands the state-transition Gaussian noise with covaridfice
The observation model belongs to the exponential family of distributiopsand ¢( ) are
the canonical parameter and normalization factor of the distribution\a(ill maps the states to
canonical parameter values/ (:) depends on the particular member of the exponential family. For
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ease of notation, we let
W@zj 0= logp(zij )= 2z t+ ()+ (z): (70)
Following the traditional Kalman lter, the process update can be written as
1= At ¢ 1t Beag; 1= Ar o 1A+ P (71)

where™; and  are the mean and covariances of the posterior belief after the procdste uqut
before the measurement udpate. For the measurement update, we seekhe conditional mode

t=arg mgx p(stjzt) (72)
= arg max p(z¢jst)b(st) (Bayes rule) (73)
= arg max p(ztj 1)b(st) (74)

, 1 —
=argmax exp( J); whered; = logp(zij )+ S(s )T (s ) (75)

@4 @¢(zt; 1) @ , — 1 _
0= — = — : 76
) @B si= @ @§+ e 0 (76)
Taking the derivative of; = W (st) about the prior mean,, we let
@Wst)

Yi = : 77
= @ . (77)

Similarly, performing a Taylor expansion c@% about { = W(—),

@(z) 1) _ @i(z] 1) @ «(zj 1) -
= . 78
@ e . eer .tV (78)
@té@zttjt)=_t+'t( t ) (79)
where o= 2( 2o+ () @) i (Ean.70) (80)
= 1)
1=+ 4 (82)

_@ «(zi ) —\.
and °t = @)tt76@tt-rt t=1( t t)- (83)
ot =" (84)
Plugging Equations 82 and 84 into Equation 79, and then into Equation 76,

Y+ 2+ = (0 (85)
AR O G ) I (R (86)
Yo M 2) 0= e (87)
YT m Ws)= e ) (88)
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wherez = ( ¢ % Y4 z)) is the projection of the observation onto the parameter space of
the exponential family distribution, and is independerg;ofin Equation 88 we substituted using
Equation 69.

Mean Update

Using Equation 88 and substituting for s,

SN0 oY m W( ) (89)

Y tum WD)+ W() W() (90)
Y i W) YT (W) W) (91)

LinearizingW (st) about™,

W(s) = W()+ WIs)s=— (s ) (92)
=W+ Y (o ) (93)

) e 0EY @m WD) YT Y (e ) (94)
YU WO =+ Y Y ) (95)
= M ) (96)

) ¢ o= Yy i&m W) (97)

where Y," °; = K is the Kalman gain for non-Gaussian exponential family distributions. Via a
standard transformation, the Kalman gain can be written in terms of covasiatioer than ¢,

Ke= oYy (Y oYy + %51t (98)
and t= 1+ Ki(m W()): (99)

Covariance Update

Given a Gaussian posterior beli% is the inverse of the covariance of the agent's belief

(= g‘; (100)

= D Ms D W i Ws)) (101)
AN AA (102)

) = YT v b (103)

Appendix B. Rock Sample Observation Model

In the Rocksample problem, the Bernoulli observation function can be wekdnllows. Recall
thatr; is the agent's position at timg RB; is the location of the information beacon associated
with rocki, zj; is a binary observation of the value of rockt timet, ands;; is the true value of
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rocki at timet. Then if we letdi; =kri RBj kp, then
P(zitJRVit = Sit;rt; RBj) (104)
=(0:5+(siy 0:5)2 Y =Poyzu (0:5 (s, 0:5)2 it Do)l Zix (105)
0:5+ (s 0:5)2 dit=Do
05 (sit 0:5)2 it =Do
=exp(zit +  t( 1): (107)

We therefore have the parameters of the exponential family observatiosl mod

= exp(zit In +In(0:5 (siy 0:5)2 dix =Doy) (106)

it = W(Sit:r;RBj) (108)
i 95+ (su 05)2 dix =Do

109
05 (sit 0:5)2 it =Do (109)
it = In(0:5 (siy 0:5)2 b =Poy (110)
=In(exp( i) +1): (111)

We can then derive the derivativ¥s and i+
v, = @WSit; 1 RBi) (112)

@ﬁ Sit =Mit

: . : dix =Do
_ @ n 05+ (st 0:5)2 " (113)
@ﬁ 0:5 (Si;t 05)2 dix =Do Sit =Miqy
dit =Do
= 2 - Lo (114)
05+ (Myy  0:5)2 %t=Do 05 (my; 0:5)2 it =Do
where$; is the mean of the belief used for linearization. Since
) it =In(exp( it)+1); (115)
then
@by

it = ) (116)

| @lzyt it = Ai;t

N N

exp(i)+1  (exp(fix) +1)2

Appendix C. Target Tracking Observation Model

We adopt an observation model for target tracking where the targetv@t®n obtained has Gaus-
sian noise and the noise covariancg is a function of the position of the helicopter and target
i

2 3 02 31
Zyi Xj
42;5 = @y SA+N(©O; )
Zj i
zi = O(Xi;V¥i;Xa;Ya; ha);
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Figure 11: The observation noise covariance is a function of the heidtglicopter, the distance
between the helicopter and the mean of the target belief, and the covasfahedarget
belief. At lower altitudes, the helicopter can make better observations eftsactpse to
it, but has a limited eld of vision. At higher heights, the helicopter can seegefarea
but even close targets are more noisily observed.

wherex;;yi; i isthe pose of target while x5; ya; ha correspond to the agent's position and height
in the environmentzy; ; zyi; Z , is the observation of targetin image coordinates.

The covariance function itself is speci ed as

Xj Xa Xi Xa

Vi Vi Yi V4
g(Xi:ViiXa;Va;ha) = Ciha+ Cp—2. e GRS
a

whereC;, C, andC3 are constants.

In the generic belief update expression where the target posstien] x;; yi; i, is unknown,
Z Z

BXsY) 7 p(zista; ) p(shsi;a)b(si)ds sit: i BYs?ds’=1;
Sj Si
which means that each possilsfavould be associated with a different covariangg. Performing
this integration exactly would not keep the distribution Gaussian. Insteadppm@ximate the ob-
servation model by computing a single expected covariancgiven the current belief distribution:
z

"= E[ 4]= B(si) zi(si)ds:

Substituting in the exact expressions for the covariance function andetted after an action is
taken but before incorporating the measuremidifs) N (sij7 ) , we get:
z T

Xi _ .— Co X Xa Xi Xa
E[ ,]= N : Cihy 2=
[ 2l yi v Y he v Ya Yi Ya

+ C3z dx;dy;:
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and by adding and subtracting, from the second term, reduces to

C _ Xa Xa Co—
E[ 2] = Citha+ =
[zl 1lla ha Xy Ya Xy Va ha

where™,; ~ xy refer to the translational components of the agent's belief.

In contrast to simpler observation models, our observation model hasdinalile characteristic
that if a target's location is very uncertain, namely its covarianggeis very large, then even if the
target's mean location is close to the helicopter's mean location, the expected bEereceiving
an observation (in terms of reducing the target's uncertainty) is still small. prbjgerty comes out
automatically from the above derivation, sing¢ ;] includes the current target covariancg .
Figure 11 provides an illustration of the expected covariance for diffdozations of the target
relative to the agent, agent heights, and target belief covariances.
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