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Abstract— Safety analysis is a necessary component in the
design and deployment of autonomous systems. Techniques
from robust optimal control theory, such as Hamilton-Jacobi
reachability analysis, allow a rigorous formalization of safety as
guaranteed constraint satisfaction. Unfortunately, the computa-
tional complexity of these tools for general dynamical systems
scales poorly with state dimension, making existing tools im-
practical beyond small problems. Modern reinforcement learn-
ing methods have shown promising ability to find approximate
yet proficient solutions to optimal control problems in complex
and high-dimensional systems, however their formulation is
restricted to problems with an additive payoff (reward) over
time, unsuitable for reasoning about safety. In recent work, we
proved that the problem of maximizing the minimum payoff
over time, central to safety analysis, can be time-discounted to
induce a contraction mapping. Here, we introduce a novel, time-
discounted Safety Bellman Equation that renders reinforcement
learning techniques amenable to quantitative safety analysis,
enabling them to approximate the safe set and optimal safety
policy. This opens a new avenue of research connecting control-
theoretic safety analysis and the reinforcement learning domain.
We demonstrate our formulation on a variety of simulated
robotics tasks and reinforcement learning schemes, validating
our results against analytic and numerical solutions when
these can be obtained, and showing scalability to previously
intractable problems of up to 18 state dimensions by exploiting
state-of-the-art deep reinforcement learning algorithms.

I. INTRODUCTION

As robotic and automated systems are deployed in the
world with an increasing degree of autonomy, safety becomes
a central consideration. Safety is fundamentally a constraint
satisfaction problem: the state of the system and its environ-
ment must never enter failure regions defined by the designer
(e.g. collisions, traffic rule violations, power blackouts, etc.).

Unfortunately, providing such constraint satisfaction guar-
antees is computationally demanding for complex dynamical
systems. In the general case, it requires solving a nonlinear
optimal control problem in which the objective is not an
average or cumulative performance over time but rather the
worst case (expressed as a minimum) through time. Work in
Hamilton-Jacobi reachability analysis [1–4] has developed
rigorous theoretical formulations for which accurate numer-
ical solutions are possible [5]; however, the computational
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Fig. 1: Multiple snapshots of the neural network output of our Safety
Q-learning algorithm for a double-integrator system. As we anneal the
discount factor γ → 1 during Q-learning, our learned discounted safety
value function asymptotically approaches the undiscounted value, allowing
us to recover the safe set and optimal safety policy with very high accuracy.

complexity falls prey to the “curse of dimensionality”. While
analytic solutions exist in rare instances [6, 7], and efficient
decompositions are occasionally possible [8], computing
safety-ensuring controllers is intractable for many systems
of interest.

In recent years, reinforcement learning techniques [9] have
proven their usefulness in computing data-driven approx-
imate solutions to optimal control problems seeking the
maximization of a discounted additive payoff in complex and
high-dimensional systems [10–13]. Unfortunately, functions
representing a sum of rewards over time are not well suited to
capture the safety objective, since safety is not determined
by how much a system fails on average, but by whether
it fails at all. Partly for this reason, reinforcement learning
techniques have not seen widespread use for safety analysis.

Another consequence of this disconnect between formu-
lations is that controllers computed through reinforcement
learning are typically not inherently safety-preserving, a
limitation that has hindered their applicability to physical au-
tonomous systems. In recent years, there has been a growing
interest around “safe learning” schemes. Some approaches
have proposed formalizing safety as stability [14] or near-
constraint satisfaction [15, 16]. Others have built on the
Hamilton-Jacobi reachability literature to provide constraint
satisfaction guarantees by computing a safety-preserving
control policy and overriding the learning controller when
it attempts to violate computed safety constraints [17–19].
Unfortunately, this family of methods inherits the difficulty
in scaling up computations beyond low-dimensional systems.

The present work seeks to unlock a new family of tools
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for safety analysis by rendering a wide range of state-of-
the-art methods in the reinforcement learning literature read-
ily usable for safety analysis in high-dimensional systems.
Building on the initial work in [20], which introduced a
time discount into the minimum-payoff optimal control prob-
lem, we propose a similar, tighter discounted formulation
of Hamilton-Jacobi safety analysis, obtaining a contraction
Bellman operator that lends itself to the use of temporal
difference learning techniques. We prove the key properties
of this new discounted Safety Bellman Equation and show
that our resulting Safety Q-learning algorithm converges
to the safety state-action value function in finite Markov
decision processes.

The Safety Q-learning scheme allows us to recover the
globally optimal solution to the corresponding Hamilton-
Jacobi analysis (to resolution completeness [21, 22]) in low-
dimensional problems where dense computation is viable:
we validate our results using tabular Q-learning against a
double integrator system, achieving high accuracy relative
to the analytic solution. We further observe comparable
performance when replacing the state-space grid with a neu-
ral network function approximator. Crucially, annealing the
discount factor during learning allows asymptotic recovery
of the solution to the undiscounted safety problem (Fig. 1).

We evaluate deep Safety Q-learning on a variety of
simulated robotics tasks, and observe consistently accurate
results against numerical dynamic programming solutions.
In high-dimensional systems beyond the reach of traditional
numerical methods, predicted safety accurately matches the
empirical performance of the learned safety controller.

We finally implement policy optimization through an
adaptation of the basic REINFORCE algorithm [23] to our
discounted safety formulation, and explore the potential of
using sate-of-the-art methods by similarly adapting the soft
actor-critic (SAC) scheme [24]. The promising results on an
18-dimensional problem suggest the usability of this family
of reinforcement learning methods for learning policies with
the ability to preserve safety in high-dimensional systems.

It is important to clarify that our formulation yields a
promising new tool for safety analysis: it is not in itself
a safe learning framework, since it requires experiencing
failure states in order to learn about safety. Our approach
is primarily meant to be used as a computational tool in
conjunction with a model (simulation) of the system dy-
namics; its truly model-free application, learning constraint
satisfaction online directly on the real system, should be
limited to training conditions that are not safety-critical (for
example, a vehicle test track with only virtual obstacles).
Once the safety analysis has been computed (learned), the
resulting control policy can be applied to the physical system
in similar conditions to other safety controllers, including
safe learning of performance objectives [19]. While our anal-
ysis here is presented for deterministic dynamics, robust and
stochastic extensions are possible (and have been explored to
some extent in [20]). We expect that such extensions will be
important for implementation of our formulation on physical
systems, which is of course its ultimate intended application.

II. BACKGROUND

A. System dynamics

We consider a dynamical system with state x ∈ X ⊂ Rn,
control input u ∈ U ⊂ Rm, and continuous-time dynamics

ẋ = f(x, u) . (1)

The set U is assumed compact and the dynamics f are
assumed bounded and Lipschitz continuous; under these
conditions, system trajectories ξ : R+ → X are well defined
for all measurable control inputs [25]. We use the notation
ξux (·) for a time trajectory starting at state x under control
signal u(·). For discrete-time approximations, we denote the
time step ∆t > 0.

B. Hamilton-Jacobi Safety Analysis

The safety problem can be defined as that of ensuring that
undesirable outcomes will not take place during the operation
of a system. We introduce some important control theory
results on the problem of state constraint satisfaction.

To formalize the safety problem we begin by specifying
a set of failure states that the system should avoid entering;
these failure states can generally encode physical collisions,
violations of user specifications or other undesirable out-
comes. The complement of the set of failure states is referred
to as the constraint set K ⊂ X . The safety problem is then
to determine under what conditions and control inputs the
trajectories followed by the system will remain in K for all
time. A system trajectory ξux (·) is said to be safe if for all
future times t ≥ 0, ξux (t) ∈ K.

Letting K be a closed set in X , we can always define a
function l : X → R that is satisfies l(x) ≥ 0 ⇐⇒ x ∈ K
(for example, the signed distance function to K under any
metric on X ). We can hence define the optimal control
problem, and its associated value function, as:

V (x) := sup
u(·)

inf
t≥0

l
(
ξux
)
. (2)

The value function V : X → R captures the minimum
payoff l achieved over time by a trajectory starting at each
state x ∈ X if the best possible control input is applied
at every instant. This can intuitively be thought of as the
closest the system will get to violating the constraints, as
measured by the “signed distance” l. This minimum-payoff
optimal control problem can be approached via dynamic
programming. Considering a finite time horizon t ∈ [0, T ],
it is possible to compute the optimal safety value function
as the solution to a time-dependent terminal-value Hamilton-
Jacobi-Bellman variational inequality of the form [4]:

0 = min

{
l(x)− V (x, t),

∂V

∂t
+ max

u∈U
∇xV >f(x, u)

}
,

V (x, T ) = l(x) , ∀x ∈ X . (3)

The discrete-time counterpart, which we will use as a
starting point for our discounted formulation, is as follows.

V (x, t) = min

{
l(x),max

u∈U
V
(
x+ f(x, u)∆t, t+ ∆t

)}
.

(4)



In the infinite-horizon case, the value function no longer
changes in finite time, and so V (x) must satisfy the fixed-
point Bellman equation:

V (x) = min

{
l(x),max

u∈U
V
(
x+ f(x, u)∆t

)}
. (5)

An important observation about (5) is that, unlike the
common Bellman equation used in reinforcement learning,
it does not induce a contraction mapping on V and therefore
it is not generally possible to converge to the fixed point by
application of value iteration or temporal difference learning.

C. Reinforcement Learning

The field of reinforcement learning comprises a wide va-
riety of data-driven methods by which a system can compute
approximations to the optimal value function and/or optimal
policy to an optimal control problem. Reinforcement learning
is usually formulated in the discrete-time Markov decision
process framework, considering the problem of maximizing
the cumulative sum of rewards of a trajectory, exponentially
discounted over time.

Considering deterministic dynamics (1) and maintaining
notation consistent with other sections, the dynamic pro-
gramming principle associated with this control problem
takes the form of the discrete-time Bellman equation [26]:

V (x) = max
u∈U

r(x, u) + γV
(
x+ f(x, u)∆t

)
, (6)

Crucially, this Bellman update induces a contraction map-
ping in the space of value functions (under the supremum
norm), which implies that its successive application to any
initial V will ultimately converge to the unique solution
of (6). This enables key convergence results in reinforcement
learning schemes, most notably temporal-difference learning
methods such as Q-learning [27].

In the next section we introduce a modification of (5) that
yields a contraction mapping for our problem of interest,
and extend the convergence results of temporal difference
learning to safety control problems.

III. THE DISCOUNTED SAFETY BELLMAN EQUATION

Our central contribution is a modified form of the dynamic
programming safety backup (5) which induces a contraction
mapping in the space of value functions and is therefore
amenable to reinforcement learning methods based on tem-
poral difference learning [10, 27, 28].

Our key observation stems from an intuitive interpretation
of time-discounting in the problem of cumulative rewards:
at every instant, there is a small probability 1 − γ of
transitioning to an absorbing state from which no more
rewards will be accrued. Thus in (6) the discount factor
γ ∈ [0, 1) can be seen as the probability of the episode
continuing, with 1−γ conversely representing the probability
of transitioning to a terminal state.

An analogous interpretation in the problem of minimum
payoff over time can be achieved by modifying (5) to account
for such a transition. Here if, with probability 1 − γ, an
episode were to end after the current time step, the minimum

future l(·) would be equal to the current l(x). This induces
the discrete-time discounted dynamic programming equation

V (x) = (1−γ)l(x)+γmin
{
l(x),max

u∈U
V
(
x+f(x, u)∆t

)}
.

(7)
This equation yields a strictly tighter contraction mapping

than the recent analysis in [20]. By discounting locally
towards the current l(x), rather than towards a global up-
per bound L on l, we significantly reduce the amount of
information loss due to discounting. This is shown in the
Appendix.

Letting li be the value of l achieved by a discrete-time state
trajectory ξux at the i-th time step, the explicit form of the
objective maximized in (7) is a “time-discounted” minimum:

J(ξux ) = (1− γ)l0 + γ
[

min
{
l0, (1− γ)l1+ (8)

γ(min{l1, (1− γ)l2 + γ . . .)
}]

.

We prove two key properties of our proposed equation.

Theorem 1. (Contraction mapping) The discounted Safety
Bellman Equation (7) induces a contraction mapping under
the supremum norm. That is, let V, Ṽ : X → R, then there
exists a constant κ ∈ [0, 1) such that ‖B[V ] − B[Ṽ ]‖∞ ≤
κ‖V − Ṽ ‖∞.
Proof: It will suffice to show that for all states x ∈ X ,
|B[V ](x)−B[Ṽ ](x)| < κ‖V − Ṽ ‖∞. We have:

|B[V ](x)−B[Ṽ ](x)|
=γ|min{l(x),max

u∈U
V
(
x+ f(x, u)∆t

)
}

−min{l(x),max
ũ∈U

Ṽ
(
x+ f(x, ũ)∆t

)
}|

≤γ|max
u∈U

V
(
x+ f(x, u)∆t

)
−max

ũ∈U
Ṽ
(
x+ f(x, ũ)∆t

)
| .

Now, without loss of generality suppose the first maximum
is the larger one, and let u∗ ∈ U achieve it. We continue:

|B[V ](x)−B[Ṽ ](x)|
≤γ|V

(
x+ f(x, u∗)∆t

)
− Ṽ

(
x+ f(x, u∗)∆t

)
|

≤γmax
u∈U
|V
(
x+ f(x, u)∆t

)
− Ṽ

(
x+ f(x, u)∆t

)
|

≤γ sup
x̃
|V (x̃)− Ṽ (x̃)| = γ‖V − Ṽ ‖∞ .

Thus the sought contraction constant is in fact γ ∈ [0, 1).

Proposition 1. (Value approximation) In the limit of no dis-
counting, the fixed-point solution to the Safety Bellman Equa-
tion (7) converges to the undiscounted safety value function.
Proof: Taking the limit of the optimization of (8) as γ goes
to 1 we recover:

lim
γ→1

V (x) = max
u0:T

min
{
l0, l1, l2, . . .

}
,

which solves (5) and is the discrete-time approximation
to (2).

The above two theoretical results enable the use of rein-
forcement learning techniques for safety analysis. We end
this section with an important consequence of Theorem 1.



Theorem 2. (Convergence of Safety Q-learning) Let X ⊆ X
and U ⊆ U be finite discretizations of the state and
action spaces, and let f : X × U → X be a discrete
transition function approximating the system dynamics. The
Q-learning scheme applied to the discounted safety problem
and executed on the above discretization converges, with
probability 1, to the optimal state-action safety value function

Q(x,u) := (1−γ)l(x)+γmin
{
l(x), max

u′∈U
Q
(
f(x,u),u′

)}
,

in the limit of infinite exploration time and given partly-
random episode initialization and learning policy with full
support over X and U respectively. Concretely, learning is
carried out by the update rule:

Qk+1(x,u)← Qk(x,u) + αk

[
(1− γ)l(x)+

γmin
{
l(x), max

u′∈U
Q
(
f(x,u),u′

)}
−Qk(x,u)

]
,

for learning rate αk(x,u) satisfying∑
k

αk(x,u) =∞
∑
k

α2
k(x,u) <∞ ,

for all x ∈ X,u ∈ U.
Proof: Our proof follows from the general proof of Q-
learning convergence for finite-state, finite-action Markov de-
cision processes presented in [29]. Our transition dynamics
f , initialization and policy randomization, and learning rate
αk satisfy Assumptions 1, 2, and 3 in [29] in the standard
way. The only critical difference in the proof is the contrac-
tion mapping, which we obtain under the supremum norm by
Theorem 1: with this, Assumption 5 in [29] is met, granting
convergence of Q-learning by Theorem 3 in [29].

We stress that, beyond Q-learning, the contraction-
mapping property of our discounted safety backup opens
the door to straightforward application of a wide variety
of reinforcement learning schemes to safety analysis. We
dedicate the following section to a first demonstration in
which we explore the application of canonical reinforcement
learning algorithms in the two main families: value learning
and policy optimization.

IV. RESULTS

We present the results of implementing our proposed
discounted Safety Bellman Equation in multiple reinforce-
ment learning schemes: tabular Q-learning [27], deep Q-
learning (DQN) [10], REINFORCE [23], and soft actor-critic
(SAC) [24], and four different dynamical systems. We first
validate the computed safety value function and safe set
against analytically and numerically obtained ground-truth
references in traditionally tractable systems. We consider
two dynamical systems commonly used as benchmarks in
control theory, namely a 2-D double-integrator system and a
4-D cart-pole system. We then demonstrate the scalability
and usefulness of our formulation in higher-dimensional
nonlinear systems, for which exact safety analysis is gener-
ally considered intractable. We use simulation environments
common in reinforcement learning [30], namely a 6-D lunar
lander system and an 18-D “half-cheetah” system.
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Fig. 3: Fraction of initial conditions resulting in violations as training
proceeds. Each data point is a sample average from 1000 episodes; statistics
are taken over 100 independent training runs. As learning progresses,
the fraction of violations reliably decreases, approaching the ground-truth
fraction of unsafe states (from which violation is inevitable) for the double
integrator and cart-pole. Lunar lander ground truth is unknown.

A. Validation: comparison to ground truth

1) Analytic validation: double integrator: The double
integrator is a classic reachability example where the control
policy seeks to keep the system in the set {[x, v] ∈ R2 :
x ∈ [xmin, xmax]} with the dynamics characterized by:

ẋ = v , v̇ = u , (9)

with |u| ≤ umax, where x can be seen as position, v as
velocity, and u as an acceleration input. Analytically, the safe
set is characterized by the interior of the boundary defined
by the parabolic segments{

xlow + v2

2umax
v ≤ 0

xhigh − v2

2umax
v ≥ 0

(10)

and the boundaries x = xlow, x = xhigh. Although simple,
this example proves a useful context for visualizing the effect
of γ, since the entire value function can be represented in
two dimensions.

It can be seen in Fig. 1 how as γ is annealed the time
horizon of safety is effectively extended: for lower values
the value function resembles l(·), and for higher values it
approaches the undiscounted value function. Final accuracy
and in-training performance are shown in Fig. 2 and Fig. 3.

Using tabular Q-learning with l(·) as the signed Euclidean
distance to the boundary of the constraint set and annealing γ
to 1 similar to [31], we observe convergence to the safe set up
to the resolution of the grid. Independently training 100 deep
Q-networks [10] with fully-connected layers using our dis-
counted Safety Bellman Equation we find near-convergence
to the safe set with an average 2.26 × 10−5 (minimum
0, maximum 1.27 × 10−4) fraction of points incorrectly
characterized as safe and an average 1.76× 10−4 (minimum
3.26 × 10−5, maximum 3.31 × 10−4) of points falsely
characterized as unsafe. Classification is visualized in Fig. 4.
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Tabular Q-learning Deep Q-learning

Fig. 4: Safe sets learned by tabular (left) and deep Q-learning (right) with the
discounted Safety Bellman Equation compared to the analytic set (black).

2) Numerical validation: cart-pole: The cart-pole system
(inverted pendulum) is a classic control problem and one
ripe for safety analysis. A cart moving on a one-dimensional
track is attached by a pivot to a pole. The control policy
seeks to keep the pole from falling and to keep the cart from
the edge of the track by applying accelerations to the cart.
For this system, the ground truth safe set must be computed
numerically on a grid using dynamic programming [1]. Over
100 random seeds we find that an average 5.16 × 10−3%
(minimum 4.90×10−4%, maximum 2.56×10−2%) of points
are misclassified as safe and an average 5.80 × 10−2%
(minimum 4.24×10−2%, maximum 8.4×10−2%) of points
are misclassified as unsafe, relative to the numerically ap-
proximated ground truth. In reality, the precision of the
numerical ground truth is limited by the grid resolution; thus,
if we consider any points less than one full grid cell away
from a safe grid point to be safe, we find that only an average
1.47×10−6 (minimum 0, maximum 4.54×10−5) fraction of
points are misclassified as safe by our method (Figs. 2 and 3).

B. Scalability: safety for high dimensional systems

The two examples we have shown thus far help us validate
our approach against well-established safety analysis tools.
However, a motivating factor of this work is to enable
safety analysis for systems that are too high-dimensional for
traditional approaches. In this section we will explore how
our method fares in two high-dimensional systems from the
OpenAI Gym environment collection [30].

1) Temporal difference: lunar lander: We first consider
a lunar lander system with 6 states s = [x, y, θ, ẋ, ẏ, θ̇]
(vehicle pose and velocities). The signed distance safety
function is defined as l(s) = max{lfly(s), lland(s)}, with
lfly(s) = min{x− xwmin, x

w
max − x, y − ywmin, y

w
max − y}, and

lland(s)=min{x−xpmin, x
p
max−x, θ−θmin, θmax−θ, ẏ−ẏmin}.

Terms marked with superscript w indicate viewing window
limits, and terms marked with superscript p indicate landing
pad limits. The margin l(·) is thus constructed to allow
either flying in free space or landing on the pad; this
example illustrates the ability to encode arbitrary state
constraints through a signed distance function.

We train 100 Safety DQNs with different random seeds
and compare learned values against the observed safety
by performing on-policy rollouts in simulation (Fig. 2).
Since computing the safety value function through dynamic
programming is intractable on 6-dimensional systems, there
is no known ground truth to compare against (Fig. 3). While
the learned Q-value function may be suboptimal, it does give

accurate safety predictions for its induced best-effort policy.
We present x-y slices of a sample trained value function in
Fig. 5, where the learned safety structure can be seen.

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

x

y

vx = �1

vx = 0

vx = 1

vy = �1

vy = 0

vy = 1

vx = �1
<latexit sha1_base64="6nAIcRSCQVlDCvdCw8BfIuLDgE0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnoRil48VrAf0C4lm2bb2GyyJNliWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKFlogitE8mlagVYU84ErRtmOG3FiuIo4LQZDG+nfnNElWZSPJhxTP0I9wULGcHGSo1R9+n6zOsWS27ZnQEtEy8jJchQ6xa/Oj1JkogKQzjWuu25sfFTrAwjnE4KnUTTGJMh7tO2pQJHVPvp7NoJOrFKD4VS2RIGzdTfEymOtB5Hge2MsBnoRW8q/ue1ExNe+SkTcWKoIPNFYcKRkWj6OuoxRYnhY0swUczeisgAK0yMDahgQ/AWX14mjUrZOy9X7i9K1ZssjjwcwTGcggeXUIU7qEEdCDzCM7zCmyOdF+fd+Zi35pxs5hD+wPn8AdPVjqI=</latexit>

vx = 1
<latexit sha1_base64="ZvpCaCPDWGpgymcSZYXBYykTK6U=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgl6EohePFdy20C4lm2bb0GyyJNliWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKllqgj1ieRStUOsKWeC+oYZTtuJojgOOW2Fo7uZ3xpTpZkUj2aS0CDGA8EiRrCxkj/uPd14vXLFrbpzoFXi5aQCORq98le3L0kaU2EIx1p3PDcxQYaVYYTTaambappgMsID2rFU4JjqIJsfO0VnVumjSCpbwqC5+nsiw7HWkzi0nTE2Q73szcT/vE5qousgYyJJDRVksShKOTISzT5HfaYoMXxiCSaK2VsRGWKFibH5lGwI3vLLq6RZq3oX1drDZaV+m8dRhBM4hXPw4ArqcA8N8IEAg2d4hTdHOC/Ou/OxaC04+cwx/IHz+QNo/o5r</latexit>

vy = 1
<latexit sha1_base64="BQf1X1zcGE3P4mcTaB/LCqNvpaI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYNpCG8pmu2mXbnbD7qYQQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyacaeO6387a+sbm1nZpp7y7t39wWDk6bmmZKkJ9IrlUnRBrypmgvmGG006iKI5DTtvh+H7mtydUaSbFk8kSGsR4KFjECDZW8if97NbrV6puzZ0DrRKvIFUo0OxXvnoDSdKYCkM41rrruYkJcqwMI5xOy71U0wSTMR7SrqUCx1QH+fzYKTq3ygBFUtkSBs3V3xM5jrXO4tB2xtiM9LI3E//zuqmJboKciSQ1VJDFoijlyEg0+xwNmKLE8MwSTBSztyIywgoTY/Mp2xC85ZdXSate8y5r9cerauOuiKMEp3AGF+DBNTTgAZrgAwEGz/AKb45wXpx352PRuuYUMyfwB87nD2qEjmw=</latexit>

vy = �1
<latexit sha1_base64="tijsQsQu7QNxtk6BK2SJeHQwy1Q=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXBb0IRS8eK9gPaJeSTbNtbDZZkmxhWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjO6mfmtMlWZSPJo0pn6EB4KFjGBjpea4l96ceb1yxa26M6Bl4uWkAjnqvfJXty9JElFhCMdadzw3Nn6GlWGE00mpm2gaYzLCA9qxVOCIaj+bXTtBJ1bpo1AqW8Kgmfp7IsOR1mkU2M4Im6Fe9Kbif14nMeG1nzERJ4YKMl8UJhwZiaavoz5TlBieWoKJYvZWRIZYYWJsQCUbgrf48jJpnle9i+r5w2WldpvHUYQjOIZT8OAKanAPdWgAgSd4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/1VyOow==</latexit>

Fig. 5: Slices of the learned lunar lander value function overlaid on the
image of the viewing window for θ = 0 and θ̇ = 0. Computed safe set
boundary in black. At low speeds, the values near the ground are higher
close to the landing pad, revealing the effect of lland. For large downward
velocities, ground collision is inevitable from the lower half of the screen.

2) Policy optimization: half-cheetah: Many successful
modern reinforcement learning methods use neural networks
to directly represent control policies and search for efficient
strategies. A number of policy gradient algorithms derive
their policy update from the REINFORCE rule [23]:

∇θEξ∼πθ [J(ξ)] = Eξ∼πθ [∇θ log(pπθ (ξ))J(ξ)] , (11)

with pπθ (·) denoting the probability of taking a trajectory ξ
under the stochastic policy πθ parametrized by θ, and J(·)
denoting the outcome of ξ. Taking J(·) to represent the time-
discounted minimum payoff l(·) of the trajectory as in (8),
we can directly optimize a policy for discounted safety.

We consider an 18-dimensional half-cheetah system within
the MuJoCo physics simulator [32], and define l(·) to be the
minimum height of the head and the front leg, so that a fail-
ure occurs if either touches the ground (Fig. 6). Note that we
must (at least in part) initialize trajectories at configurations
from which the system could in principle maintain safety.
Running policy gradient using REINFORCE, all policies
trained for discounted safety attempt to balance, though
not always successfully, and some learn to sit. In contrast,
policies trained with the standard reinforcement learning
formulation using l(·) as an additive reward tend to raise
the front leg and sometimes jump, and invariably fall over.
Defining an alternative reward that purely penalizes forbid-
den contacts similarly failed to yield safe learned behaviors.

Using the more sophisticated soft actor-critic (SAC) al-
gorithm [24] we find that after hyper-parameter optimiza-
tion, all policies trained across 20 random seeds using a
discounted sum of l(·) launch the cheetah into the air and
always fall over. Using a discounted sum of contact penalties,
65% of policies do learn to sit; however, the remaining 35%
produce unsafe jumping behavior. We speculate that the spar-
sity of the reward signal makes learning challenging. Across
the 20 random seeds, all policies trained with discounted
safety visibly attempt to stand: 80% of them succeed in doing
so reliably, with an additional 5% reliably sitting if standing
fails. The different emergent policies are depicted in Fig. 6.
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Fig. 6: Learned half-cheetah safety policies aimed to keep the head and front
leg off the ground. Left to right: typical starting configuration; an unsafe
jumping policy learned using a sum of discounted heights; a safe sitting
policy learned using discounted safety or (less reliably) discounted sum of
contact penalties; a safe standing policy learned using discounted safety.

V. CONCLUSION

A. Summary

We present a time-discounted Safety Bellman Equation
whose unique fixed-point solution converges to the undis-
counted Hamilton-Jacobi safety value function as the time
discounting is asymptotically relaxed. Our new formulation
can readily be used with a wide variety of state-of-the-art
reinforcement learning algorithms by a simple modification
of their Bellman update step. We prove the convergence of
the resulting Safety Q-learning scheme in finite Markov deci-
sion processes, which to our knowledge is the first model-free
method for computing the safety value function beyond naive
Monte Carlo trajectory shooting. Adopting function approx-
imation techniques from modern reinforcement learning, we
demonstrate scalability for higher dimensional systems and
find that our DQN-based approach is accurate compared to
analytic solutions and existing numerical methods. Finally,
by directly optimizing the control policy for discounted
safety in a system with 18 continuous state dimensions,
leading to Safety REINFORCE and Safety SAC, we find that
it is possible to learn control policies that preserve safety
with significantly more success than those obtained from the
standard reinforcement learning formulation using a sum of
discounted rewards.

B. Implications for Hamilton-Jacobi safety analysis

We see our contribution as unlocking a family of tools for
safety analysis that can be successfully applied to systems
intractable for traditional techniques. Once computed, the
learned safety analysis can have practical applications in safe
robot control and safe reinforcement learning, analogous to
existing safety analysis tools. To this end, we expect that
robust formulations, as well as research in transfer learning
will facilitate the use of simulation-based safety analysis
in physical systems; we also note that, subject to model
fidelity, conservative approximations of the safety value can
always be guaranteed through forward simulation of the
computed safety policy [33]. While our focus in this work
is on model-free reinforcement learning algorithms, model-
based methods such as value and policy iteration can also
be employed for safety analysis under the discounted safety
formulation. We recently explored such methods in [20].

C. Implications for reinforcement learning
By introducing a Safety Bellman Equation that is readily

compatible with the reinforcement learning framework, we
hope to enable and inspire researchers and practitioners in
the field of reinforcement learning to explicitly include safety
in their learning algorithms. Ultimately, we hope that, by
enabling learning systems to reason about constraint satis-
faction, future advances in the field will bring about highly
capable intelligent systems that can be deployed safely [34].

D. Limitations and future work
To reach convergence under model-free learning schemes,

the system must repeatedly violate the constraints. Thus
model-free algorithms using discounted safety must be used
in simulation or an environment where leaving the constraint
set does not result in catastrophic failure. Additionally,
policies trained with our formulation will seek to maintain
safety but not accomplish another task while staying safe.
Thus combining discounted safety with performance-driven
learning is a natural next step, e.g. by using the learned safety
policy in a supervisory control framework [17, 19]. Since
the Safety Q-learning scheme is off-policy, safety analysis
can be continually updated in the background even while
a system is controlled by a different policy. Finally, while
deep neural networks are expressive function approximators,
their training methods do not in general have convergence
guarantees. It may prove fruitful to investigate combining our
work with recent research in neural network verification [35]
to provide formal guarantees about learned value functions
and control policies.

APPENDIX

We show that our proposed discounted Safety Bellman
Equation (7) yields a tighter contraction mapping than the
alternative recently proposed in [20], which uses a global
upper bound L on the function l(x) (i.e. l(x) ≤ L,∀x ∈ X ):

V (x) = min
{
l(x),max

u∈U
(1− γ)L+ γV

(
x+ f(x, u)∆t

)}
(12)

It can be seen that (12) incurs a heavier information loss than
(7) relative to the undiscounted backup (5). Both backups are
exact when l(x) ≤ V

(
x + f(x, u)∆t

)
, since they evaluate

to l(x). Wherever l(x) > V
(
x+ f(x, u)∆t

)
, the right-hand

side of the exact safety backup (5) is V
(
x + f(x, u)∆t

)
.

For any γ ∈ (0, 1) we have that the right-hand side of (5)
evaluates to (1 − γ)l(x) + γV

(
x + f(x, u)∆t

)
, which is

strictly less than l(x), and much closer to V
(
x+f(x, u)∆t

)
for γ close to 1. Conversely, in (12), the second term in the
minimum is (1− γ)L+ γ(V

(
x+ f(x, u)∆t

)
. By definition

of L, this term is larger than the right-hand side of (7) at
any states where the bound L on l(x) is strict. Further, at
states where l(x) is sufficiently far from L, this term will be
greater than l(x) itself, causing the right-hand side of (12)
to evaluate to l(x), effectively losing the information about
future safety contained in V

(
x+ f(x, u)∆t

)
. This loss may

persist even for γ close to 1, making the global discounting
in (12) less amenable to reinforcement learning tools.
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