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Abstract— Autonomous driving in mixed traffic requires
reliably predicting the motion of nearby traffic agents, such
as pedestrians, bicycles, cars, buses, etc. . This prediction task
is extremely challenging, because of the diverse geometry and
dynamics of traffic agents, multi-way interactions among them,
and complex road conditions. This paper presents GAMMA,
a general agent motion prediction model for autonomous
driving. GAMMA predicts the motion of heterogeneous traffic
agents with different geometric, kinematics, and behavioral
constraints. It formalizes motion prediction as constrained
geometric optimization in the velocity space and integrates both
physical and behavioral constraints into a unified framework.
Our results show that GAMMA outperforms state-of-the-art
motion prediction methods substantially on real-world datasets.

I. INTRODUCTION

Autonomous vehicles navigating in dynamic and inter-
active environments like Fig. 1 need to foresee the future
motion of nearby traffic agents (pedestrians, bicycles, cars,
buses, etc.) to ensure safety and efficiency. However, it is
extremely challenging to predict the motions of real-world
traffic agents, due to the diverse dynamics and geometry
of traffic agents, complex road conditions, and intensive
interactions among the agents. We observe that the motion of
traffic agents are governed by various physical and behavioral
constraints. Traffic agents try to reach their destinations
under their kinematic constraints, and in the meantime, they
share the responsibility for collision avoidance with each
other, while having limited attention capabilities.

In this paper, we identify five key factors that govern traffic
agents’ motions: kinematics, geometry (collision avoidance),
intention (destination), responsibility, and attention. We de-
velop GAMMA, a General Agent Motion prediction Model
for Autonomous driving, that integrates these factors in a
unified framework. GAMMA formalizes motion prediction
as geometry optimization in the velocity space, which is
conditioned on physical constraints (kinematics and geome-
try) and behavioral constraints (intentions, attentions, and re-
sponsibilities). The optimization objective is specified by the
intention of a traffic agent, while the constraints are imposed
by kinematics, geometry, responsibilities, and attentions.

GAMMA significantly extends the existing constrained ge-
ometry optimization framework [1] in the following aspects.
First, GAMMA explicitly models heterogeneous kinematics.
It enforces the predictions to be kinematically feasible by
only considering velocities that can be tracked within a
maximum tracking error with the agent’s kinematics. Second,
GAMMA uses polygon representation for agents’ geometry,
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Fig. 1. Screenshots of our heterogeneous datasets: UTOWN and CROSS.

which is tighter than disc-shaped ones in [1] and much
more representative for most real-world traffic agents. Third,
GAMMA incorporates various behavioral constraints to the
model. Since behavioral constraints are hidden and differ
from individuals, GAMMA applies Bayesian inference to
infer a distribution over possible behavioral constraints for
each agent. It then generates trajectories using the behavioral
constraints of maximum likelihood.

We collected two datasets containing heterogeneous traffic
agents (Fig. 1). We compare GAMMA with state-of-the-
art motion prediction models on our new datasets and two
standard benchmark datasets. Results show that GAMMA
significantly outperforms these approaches in predicting real-
world trajectories. Our ablation study further demonstrates
the importance of the identified key factors in trajectory
predictions. Our source code and datasets will be released
upon paper acceptance.

II. RELATED WORK

A. Traditional Approaches For Motion Prediction

We categorize the traditional approaches for motion pre-
diction into four groups: social force based, geometry opti-
mization based, and maneuver recognition based, and rule
based approaches. Social force models [2], [3], [4], [5],
[6] assume that traffic agents are driven by virtual forces
generated from the internal motivations such as reaching the
goal, and the external constraints such as avoiding obstacles.
Geometry optimization based approaches compute collision-
free motions for multiple traffic agents via optimization in the
feasible geometric space. The representative work includes
Velocity Obstacle (VO) based [7] and the Reciprocal Velocity
Obstacle (RVO) based algorithms [8], [1], [9]. Maneuver
recognition based approaches [10], [11], [12] first classify
the traffic agents’ motions into semantically interpretable
maneuver using approaches such as HMMs and SVMs, and
then predict the motions conditioned on the maneuver with
traditional approaches, e.g., polynomial curve fitting [13],
minimization on carefully designed cost functions, etc.. Rule
based approaches predict motions assuming traffic agents
move by simple rules such as lane following. Many driving
simulators [14], [15], [16] use rule-based motion models.
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These approaches, however, do not explicitly model the
five factors we proposed and hence are not able to handle
heterogeneous traffic agents with different kinematics, geom-
etry representations, or behavioral constraints.

Some previous work has considered some of the five
factors. NH-ORCA [17] and B-ORCA [18] predict motions
considering non-holonomic constraints. AVO [19] takes into
account the acceleration constraints to ensure continuous
velocity. Those approaches, however, do not generalize to
general kinematics, hence cannot handle the interactions
between traffic agents with different kinematic constraints.
GVO [20] uses a general algebraic representation to in-
corporate different kinematics. However, it models poorly
the interactions among traffic agents since it assumes all
other agents are non-reactive. Some previous work also
tried different geometry representations for agents in col-
lision avoidance, such as ellipse [21] and capsule [22]. Ma
et al.[23] present a novel CTMAT representation based on
medial axis transformation to compute tight bounding shapes
for different agents. Our work uses polygon representation
because it is representative for most traffic agents and easy
for collision checking. Some previous work has modeled
behavioral constraints. PORCA [24] infers intentions with
Bayesian inference, but it assumes responsibility changes
deterministically and all the agents are fully attentive. The
work in [25] learns a linear mapping from selected features
to attention values. The mapping, however, is learned for cars
and might not be suitable for traffic agents of other types.

B. Deep Learning Approaches For Motion Prediction
Considerable research has been done for motion predic-

tion with deep learning approaches. S-LSTM [26] models
each agent’s trajectory with one LSTM, and models their
interactions using a “social pooling layer”. S-GAN [27]
improves on S-LSTM by introducing GAN to it. SoPhie [28]
leverages a social attention module and a physical attention
module to predict trajectories. SRLSTM [29] integrates a
state refinement module into LSTM for joint trajectory
predictions. These four works achieve high accuracy for
motion prediction. However, they are designed specifically
for pedestrians and are not suitable for other traffic agents
such as cars. Another group of work focuses on vehicle
trajectory prediction [30], [31], [32], [33]. They are all based
on recurrent neural network. One limitation of this group of
work is again the motion prediction for only one type of traf-
fic agents. They may not work well for heterogeneous traffic
agents with different kinematics and geometry. TraPHic [34]
and TrafficPredict [35] consider heterogeneous traffic agents
with different kinematics and geometry. TraPHic achieves
this by embedding dynamics- and shape-relevant features in
the input state space, while TrafficPredict achieves this by
using “category layers” to learn the similarities of traffic
agents of the same type. All these deep learning approaches
do not model behavioral constraints explicitly. Instead, they
directly model the interactions in a deep learning fashion.
This often results in overfitting to the training scenes, which
we will demonstrate in the experiment section. Another com-

mon issue of the deep learning approaches is the requirement
of large training data; but training data is often hard to obtain.

III. GAMMA
The motion of traffic agents are determined by physical

constraints, such as kinematics and geometry, and behavioral
constraints such as intention, attention, and responsibility.
Our motion prediction model, GAMMA, integrates both
of them into a unified framework of constrained geometry
optimization. It assumes each traffic agent optimizes its
velocity based on its intention while constrained by kinemat-
ics, geometry, attention, and responsibility. In the following,
we will first present our optimization framework, and then
introduce in detail how we embed different factors to it.

A. Optimization Framework
We formulate motion prediction as a constrained geometry

optimization problem. Given a group of traffic agents, we
compute for each agent an instantaneous velocity close to
its intended one, which is collision-free and feasible for the
traffic agent’s kinematics. We introduce the feasible space
and objective function of the problem in the following.

1) Feasible Velocity Set: For a given traffic agent,
GAMMA finds a set of velocities that is kinematically
trackable and geometrically feasible for the traffic agent. A
velocity v for a traffic agent A is defined as geometrically
feasible with respect to another traffic agent B if it does
not lead to collisions between them supposing that A moves
at v for τ time. It is called kinematically trackable if A
can track v with its low-level controller below a predefined
maximum tracking error εmax for τ time. We denote the
set of kinematically trackable velocities as Kτ

A, the set of
geometrically feasible velocities for agent A with respect to
agent B as Gτ

A|B . Moreover, traffic agents only have limited
attention capabilities. A real-world traffic agent only reacts to
agents within its attentive range, denoted as Att(A). Hence,
GAMMA finds the optimal velocity for a traffic agent A
from Gτ

A ∩Kτ
A, where Gτ

A =
⋂
B∈Att(A) Gτ

A|B .
2) Velocity Optimization: To predict the motion of A,

GAMMA computes a velocity that is closest to its preferred
velocity vprefA derived from A’ intention. This optimization
is conducted on the feasible velocity set Gτ

A ∩Kτ
A , i.e.,

vnewA = arg min
v∈Gτ

A
∩Kτ

A

∥∥∥v − vprefA

∥∥∥ . (1)

The objective function here is quadratic. Moreover, both
Gτ
A and Kτ

A are convex because of the way they are
constructed (Sec. III-B). Therefore, we can efficiently solve
the optimization problem using linear programming. The
actual prediction of A’s motion is generated by tracking vnewA

using A’s low-level controller for one time step. This process
repeats for tpred steps for all traffic agents at time t to predict
their future positions Pt+1:t+tpred .

B. Modeling Physical and Behavioral Constraints

GAMMA integrates both physical and behavioral con-
straints into the optimization framework. We will introduce
the modeling of the following five factors in detail: kinemat-
ics, geometry, intention, attention, and responsibility.



v max
0

v max
3𝜟ϕ

v max
𝜟ϕ

v max
2𝜟ϕ

v max
𝜟ϕ

v max
2𝜟ϕ

v max
3𝜟ϕ

v max
4𝜟ϕ v max

4𝜟ϕ

v max
5𝜟ϕv max

5𝜟ϕ

𝜏K^

VOA|B
𝜏

vx

B pB-pA

(pB-pA)/𝜏
u n

G𝜏 A|
B

opt
B

opt
A -

opt
A

vy

opt
B

 B ⊖ A

A

𝛄u

𝜏K̂

G
𝜏 A|
B1

G
𝜏 A|
B3

G 𝜏
A|B2

G 𝜏
A|B4

G𝜏
A

𝜏K̂∩

A

A

(a) (b) (c)

Fig. 2. (a) The estimated kinematically trackable velocity set, K̂τ , is
estimated using the convex hull of {vφmax | φ ∈ Φ}. (b) VOτA|B (gray)
and Gτ

A|B (half plane). The velocity obstacle of agent A (blue) induced by
agent B (green) for time τ , is a truncated cone with its apex at the origin
(in velocity space) and its legs tangent to the polygon B 	 A. Gτ

A|B is
a half plane divided by the line perpendicular to the vector u through the
point voptA +γu, where u is the vector from voptA −voptB to the closest point
on the boundary of VOτA|B . (c) An example of the feasible velocity space
(red) of agent A. It is the intersection of K̂τA and the geometry constraints
induced by four other agents: Gτ

A|B1
,Gτ
A|B2

,Gτ
A|B3

, and Gτ
A|B4

.

1) Kinematics Modeling: The motions of real-world traf-
fic agents are constrained by their versatile types of kinemat-
ics. For example, most vehicles cannot move sidewise. To
consider the influence of kinematics on agents’ motions, we
follow the ideas in [17] and [18] to introduce additional kine-
matic constraints to the feasible velocity space. GAMMA
only chooses velocities that can be tracked by the agent’s
kinematics within a maximum tracking error εmax. The final
prediction is generated by tracking the velocity output by
GAMMA using a low-level controller. Note that both [17]
and [18] are specifically designed for one single type of
kinematics. The challenge here is to model traffic agents with
heterogeneous kinematics, such as holonomic (pedestrians),
car-like (cars, bicycles), trailer-like (trucks), etc..

For a given traffic agent A, we need to find the kinemati-
cally trackable velocity set, Kτ

A, s.t.,

Kτ
A = {v | ‖vt− fA(v, t)‖ ≤ εmax, ∀t ∈ [0, τ ]}, (2)

where fA(v, t) is the position of A at time t if it tracks v with
its low-level controller. fA(v, t) varies for different types of
kinematics and low-level controllers. It is often intractable to
compute an analytic form of fA(v, t) for different kinematics
and controllers. We propose to estimate Kτ

A numerically
offline. We assume that the same type of traffic agents
corresponds to the same kinematics and low-level controllers.
Therefore, we only need to estimate Kτ ’s for representative
types of traffic agents: pedestrian, bicycle, motorbike, car,
van, bus, gyro-scooter, trucks, etc..

For a specific type of traffic agents, we estimate its Kτ

by first discretizing the set of holonomic velocities {v} and
running the controller offline to measure the maximum error
εv for tracking v. Then Kτ is estimated as the convex hull
of the discretized velocities with εv ≤ εmax.

Concretely, we discretize v along its two dimensions
(sv, φv), where sv is the speed and φv is the deviation angle
from traffic agent’s heading direction, into two discrete sets
S = [0 : ∆s : smax] and Φ = [0 : ∆φ : φmax]. This
forms a discretized velocity set V = {v | sv ∈ S, φv ∈ Φ}.
For each v ∈ V , we run the controller offline to track
it for a duration of τ and record its maximum tracking
error εv . Then we determine the velocities on the boundary

of the trackable set as follows. For each deviation angle
φ ∈ Φ, we collect a set Vφ of discretized velocities with
deviation angle φ and has a tracking error less than εmax,
i.e., Vφ = {v ∈ V | φv = φ, εv ≤ εmax}. After that, we
pick a velocity vφmax from Vφ that has the maximum speed,
i.e., vφmax = arg maxv∈Vφ sv . Then vφmax for all φ’s form the
boundary of the trackable velocity set, and we approximate
Kτ by the convex hull of these boundary velocities:

K̂τ = ConvexHull({vφmax | φ ∈ Φ}). (3)

Geometrically, K̂τ is a polygon in velocity space (Fig. 2a).
Although approximating Kτ brings a small approximation
error, we claim that GAMMA is robust to this error.

2) Geometry Modeling: For a given agent A, we construct
Gτ
A|B , the geometrically feasible velocity set of A with

respect to another agent B. We extend the definitions in [1]
to handle agents with more general geometry. GAMMA first
constructs a velocity obstacle for A with respect to B, then
derives Gτ

A|B based on the velocity obstacle.
Consider two agents A and B at position pA and pB ,

respectively. The velocity obstacle VOτ
A|B is defined as the

set of all relative velocities of A with respect to B that will
result in collisions before time τ . Formally,

VOτ
A|B = {v | ∃t ∈ [0, τ ], t · v ∈ (B 	A)}, (4)

where B 	 A represents the Minkowski difference, which
essentially inflates the geometry of B by that of A, and treats
A as a single point. Note that the definition of velocity obsta-
cle in [1] assumes the geometry of traffic agents to be disc-
shaped. This loose representation leads to overly conservative
motions in crowded scenes, especially for agents with large
aspect ratios such as cars and bicycles. Instead, GAMMA
adopts a polygon representation, which fits tighter with
most real-world traffic agents. Fig. 2b visualizes a velocity
obstacle constructed with two polygon-shaped agents.

We construct Gτ
A|B with respect to the optimization ve-

locities of the agents (often set to their current velocities)
similar to [1]. Consider the case where A and B will collide
with each other before time τ by taking their optimization
velocities voptA and voptB . To avoid collisions with the least
cooperative effort, GAMMA finds a relative velocity closest
to voptA − voptB from the boundary of VOτ

A|B . Let u be the
vector from voptA − voptB to this optimal relative velocity:

u = ( arg min
v∈∂VOτ

A|B

∥∥v − (voptA − voptB )
∥∥)− (voptA − voptB ). (5)

Then u is the smallest change on the relative velocity to avoid
the collision within τ time. GAMMA lets A take γ ∈ [0, 1]
of the responsibility for collision avoidance, i.e., adapt its
velocity by γ · u. Then Gτ

A|B is constructed as a half plane:

Gτ
A|B = {v | (v − (voptA + γ · u)) · n ≥ 0}, (6)

where n is the outward normal at point (voptA − voptB ) + u.
Fig. 2b visualizes Gτ

A|B .
Since Gτ

A|B is a half plane in the velocity space, Gτ
A =⋂

B∈Att(A) Gτ
A|B is convex. Moreover, since Kτ

A is convex,
the feasible velocity space Gτ

A ∩ Kτ
A will also be convex.

Fig. 2c visualizes an example feasible space induced by both



Kτ
A and Gτ

A considering four other traffic agents.
3) Intention Modeling: GAMMA computes a preferred

velocity vpref for each agent based on its intention, and uses
vpref as the optimization target (Eq. 1). The intention of a
traffic agent is commonly represented as navigating to a goal
location, where the set of possible goals are known a priori
for each environment [1], [24]. This intention representation
limits its application to complex real-world environments in
the following aspects. First, we need to re-specify the goal
locations for each new environment, which requires a lot
of manual work. Second, the actual goals of agents may
not be covered by the predefined set, resulting in inaccurate
predictions. Third, since agents target at a fixed goal location
and GAMMA only performs local optimization, an agent can
be easily trapped by large obstacles blocking its goal.

We propose a new intention representation to address
these issues. We define the intention of an agent as whether
it wants to keep moving at current velocity or at current
acceleration. This design is based on two observations:
1) constant velocity model often predicts well when an
agent intends to go straight, and 2) constant acceleration
model often predicts well when the agent intends to turn.
Based on the observations, we apply Bayesian inference to
infer each agent’s actual intention using its history positions
(Sec. III-B.6). Given an inferred intention, we generate a
reference position for the agent by applying the current
velocity/acceleration for tpred time. This position defines the
preferred velocity vpref of the agent, by assigning a direction
pointing to the position and a speed equal to its current speed.

4) Attention Modeling: Real-world traffic agents only
have limited attention capabilities. An agent does not pay
uniform attention to all nearby agents. For instance, it reacts
more to the agents in front because they are critical to
collision avoidance. Different agents usually have different
attentive radii, i.e., the radius within which other agents will
be noticed. For example, aggressive agents often have smaller
attentive radii, while conservative agents have larger ones.

According to above discussions, GAMMA adopts a half-
circle attention mechanism. It uses two half circles to model
the attention: one in front of the vehicle with radius rfront,
and one at the back with radius rrear. We set rrear ≤ rfront,
giving more attention to agents in the front. The actual
values of rfront and rrear are also determined using Bayesian
inference (Sec. III-B.6). Particularly, we define a small set
of typical values for rfront and rrear, and then infer for each
traffic agent the most likely values using its history.

Let Att(A) denote the agents inside the inferred half
circles of A. GAMMA only models the interactions between
A and agents in Att(A). Namely, it only considers the
constraints induced by a traffic agent B if B is in Att(A).

5) Responsibility Modeling: The responsibility that an
agent is willing to take for reciprocal collision avoidance
is correlated to its type and its distance to the interacting
agents. A vehicle interacting with a pedestrian often takes
more responsibility for collision avoidance when they are
far apart. But when they approach each other, the pedestrian
will take more responsibility because it is more flexible in

side-wise movements. We assume that the responsibility of
an agent changes linearly with its distance to other agents:
γ = C1 · d + C2, where γ is the responsibility and d
is the distance. The coefficient C2 determines the initial
responsibility and C1 is the responsibility changing rate.

This model is similar to that in [24]. But now the coef-
ficients, C1 and C2, differ for each agent and need to be
inferred. We predefined a set of values of C1 and C2 for
each type of traffic agents based on our thumb of rule that,
the more physical constraints a traffic agent has, the larger its
initial responsibility (C2) and the smaller its responsibility
changing rate (C1) are. Then, we apply Bayesian inference
(Sec. III-B.6) to infer their values based on the history po-
sitions. To use the inferred responsibility, we first normalize
the value of the two agents so that they sum up to one.
Then, the responsibility is injected into Eq. 6 to construct the
pair-wise collision-avoiding half planes. Note that GAMMA
can model obstacles as static agents by assigning them a
responsibility of 0 and a preferred velocity of 0.

6) Bayesian Inference for Behaviors: Behavioral con-
straints like intention, attention and responsibility are not
observable. We can only infer a distribution over their
values from agents’ history positions. We apply Bayesian
inference to achieve this. For each history time step, we
execute GAMMA with a fixed set of behavioral constraints
to simulate the stochastic dynamics of an agent and compute
the likelihood of its actual movement. This is repeated for all
combinations of behavioral constraints to get all likelihood.
Then, we apply the Bayes’ rule to incorporate the likelihood,
update the prior, and obtain a posterior distribution.

Formally, given a particular set of behavioral constraints:

B = (intent, rfront, rrear, C1, C2), (7)

we provide a stochastic estimation for the next position of
the agent, by executing GAMMA to get a mean position
pGAMMA and adding a Gaussian noise to it:

pt = pGAMMA
t (B,Pt−thist:t−1,T,O) + ε, ε ∼ N (0, σ2), (8)

where Pt−thist:t−1 are history positions, T is the set of agent
types, and O is the set of static obstacles in the environment.
The Gaussian noise has a predefined variance σ2. We assume
that Pt−thist:t−1, T, and O are fully observable because they
are relatively accurate and their noises do not pose signif-
icant effect on motion prediction compared to behavioral
constraints. We also assume that a traffic agent does not
change its behavior during the prediction horizon.

For an observed agent position pt at a history time step
t, the observation likelihood is computed as:

p(pt | B,Pt−thist:t−1,T,O) = f(
∥∥∥pt − pGAMMA

t

∥∥∥ | 0, σ2),

where f is the probability density function of the normal
distribution. Next, we update the probability distribution over
B at time step t using the Bayes’ rule:

pt(B) = η · p(pt | B,Pt−thist:t−1,T,O) · pt−1(B), (9)

where pt−1(B) is the prior distribution, pt(B) is the posterior
at time step t, and η is a normalization constant. After
parsing through all history positions of an agent, we obtain
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Fig. 3. Screenshots of homogeneous datasets. (a) and (b) are ETH dataset.
(c) and (d) are UCY dataset.

an informed distribution over its behavioral constraints.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our method GAMMA on four
datasets: ETH[36], UCY[37], UTWON, and CROSS. We
first evaluate GAMMA on homogeneous datasets with only
pedestrians (ETH and UCY) in Sec. IV-A, then on hetero-
geneous datasets with various types of agents (UTOWN and
CROSS) in Sec. IV-B. We also conduct an ablation study in
Sec. IV-C, and a speed comparison in Sec. IV-D.
Datasets. ETH and UCY are standard benchmark datasets.
ETH consists of two scenes: a plaza outside the ETH building
(ETH) and a street outside a hotel (HOTEL); UCY also
consists of two scenes: a university plaza (UNIV), and a
street outside Zara (ZARA1 and ZARA2). However, the
two datasets contain only pedestrians. To test our predictor
on heterogeneous traffic agents, we further collected two
datasets: UTOWN and CROSS. UTOWN presents a campus
plaza where many pedestrians interacting with a vehicle
scooter. CROSS presents an unsignalized cross scene with
various types of traffic agents, including cars, vans, buses,
bicycles, motorcycles, electric-tricycles, and pedestrians. See
Fig. 3 for the screenshots of the dataset scenes.
Evaluation Metrics. Following prior work [32], [27], we
report two error metrics:
• Average Displacement Error (ADE). The average Eu-

clidean distance between the predicted position and the
ground-truth position over all the time frames for a
prediction duration tpred = 4.8s.

• Final Displacement Error (FDE). The Euclidean dis-
tance between the predicted position and the ground-
truth position at the final time frame (tpred = 4.8s).

Baselines. We compare GAMMA with following baselines:
• LR: A linear regressor minimizing least square error

over history trajectories.
• S-LSTM [26]: Social LSTM which models each tra-

jectory with one LSTM, and models their interactions
using a social pooling layer.

• SRLSTM [29]: State Refinement LSTM which embeds
a state refinement module into LSTM to address the
problem of joint trajectory predictions.

• TrafficPredict [35]: LSTM-based motion predictor for
heterogeneous traffic agents. Note that TrafficPredict in
[35] reports isometrically normalized results. We scale
them back for consistent comparison.

• S-Force [6]: Social-force approach using an energy
function to generate next actions for agents considering
their preferred velocities, collisions, etc..

• PORCA [24]: Geometric optimization based approach
similar to GAMMA, but does not consider the hetero-
geneous kinematics and geometry.

ground truth
GAMMA
PORCA
SGAN

ground truth
GAMMA
PORCA
SGAN

ground truth
GAMMA
PORCA
SGAN

(a) (b) (c)

Fig. 4. The trajectory predictions of different algorithms compared with
the ground truth (red). (a) PORCA predicts an infeasible trajectory (pink).
(b) SGAN predicts a trajectory pointing to a wrong direction (blue). (c)
GAMMA prediction (yellow) is closest to the ground truth.

• SGAN [27]: Social GAN which introduces generative
adversarial network into S-LSTM.

• SoPhie [38]: GAN based approach that leverages both
social and physical attention mechanisms to consider
interactions and physical constraints of the agents.

• MATF [39]: Multi-Agent Tensor Fusion network that
fuses information from a static scene context with
multiple dynamic agent states.

• S-Ways [40]: Social-Ways which uses Info-GAN[41]
for trajectory predictions.

A. Evaluation on Homogeneous Datasets

We compare GAMMA with state-of-the-art approaches on
homogeneous benchmark datasets, ETH and UCY, which
only contain pedestrians. SGAN, MATF, SoPhie, and S-Ways
are stochastic models. They all generate 20 samples and
choose the one closest to ground truth for evaluation. For a
fair comparison, we modified GAMMA and get its stochastic
variant, GAMMA-s. GAMMA-s generates 20 samples by
sampling Gaussian noise on the inferred goal positions and
chooses the closest sample. Choosing the closest sample,
however, is meaningless for autonomous driving since it
requires the hindsight knowledge of the ground truth. One
way to address this issue is to compute an average sample
and use the average sample as the prediction. Following this
idea, we modified SGAN and get its variant SGAN-ave.

The ADE and FDE of GAMMA and the baselines are
shown in Table I. GAMMA outperforms all the baselines,
especially, the state-of-the-art deterministic models SRL-
STM and PORCA, and stochastic models MATF and S-
Ways in almost all datasets. Although the performance gain
of GAMMA over PORCA is not very significant here,
GAMMA outperforms PORCA very significantly on datasets
with heterogeneous traffic agents (Sec. IV-B).

One interesting finding is that, the simple model LR
significantly outperforms many deep learning approaches in-
cluding LSTM, S-LSTM, SGAN and SoPhie, in the HOTEL
scene, which is less crowded and mostly contains straight-
line trajectories. It demonstrates that those complex models
might overfit to the more complex scenes. In contrast, our
approach performs well in both simple and complex scenes.

B. Evaluation on Heterogeneous Datasets

We evaluate GAMMA on the heterogeneous datasets,
UTOWN and CROSS, which contain various types of traffic
agents such as pedestrians, cars, and bicycles. Our base-
lines include SRLSTM, the best-performing deep learning
baseline for homogeneous datasets, and PORCA, the best-
performing traditional baseline for homogeneous datasets.



TABLE I
PERFORMANCE COMPARISON ACROSS HOMOGENEOUS BENCHMARK DATASETS, ETH (ETH AND HOTEL) AND UCY (UNIV, ZARA1, AND ZARA2). THE ADE AND

FDE VALUES ARE SEPARATED BY SLASH. THEIR AVERAGE VALUES (AVG) ARE ALSO REPORTED.

Deterministic Models Stochastic Models
Dataset LR S-LSTM SRLSTM TrafficPredict S-Force PORCA GAMMA SGAN SGAN-ave SoPhie MATF S-Ways GAMMA-s

ETH 1.33/2.94 1.09/2.35 0.63/1.25 5.46/9.73 0.67/1.52 0.52/1.09 0.51/1.08 0.81/1.52 0.96/1.87 0.70/1.43 1.01/1.75 0.39/0.64 0.43/0.91
HOTEL 0.39/0.72 0.79/1.76 0.37/0.74 2.55/3.57 0.52/1.03 0.29/0.60 0.28/0.59 0.72/1.61 0.61/1.31 0.76/1.67 0.43/0.80 0.39/0.66 0.23/0.48
UNIV 0.82/1.59 0.67/1.40 0.41/0.90 4.32/8.00 0.74/1.12 0.47/1.09 0.44/1.06 0.60/1.26 0.57/1.22 0.54/1.24 0.44/0.91 0.55/1.31 0.43/1.03

ZARA1 0.62/1.21 0.47/1.00 0.32/0.70 3.76/7.20 0.40/0.60 0.37/0.87 0.36/0.86 0.34/0.69 0.45/0.98 0.30/0.63 0.26/0.45 0.44/0.64 0.32/0.75
ZARA2 0.77/1.48 0.56/1.17 0.51/1.10 3.31/6.37 0.40/0.68 0.30/0.70 0.28/0.68 0.42/0.84 0.39/0.86 0.38/0.78 0.26/0.57 0.51/0.92 0.24/0.59

AVG 0.79/1.59 0.72/1.54 0.45/0.94 3.88/6.97 0.55/0.99 0.39/0.87 0.37/0.85 0.58/1.18 0.60/1.25 0.54/1.15 0.48/0.90 0.46/0.83 0.33/0.75

TABLE II
PERFORMANCE COMPARISON ACROSS HETEROGENEOUS DATASETS CROSS AND

UTOWN. ADE/FDE, AND THEIR MEAN (AVG) ARE REPORTED.

Dataset TrafficPredict SRLSTM SGAN-ave SGAN PORCA GAMMA

CROSS 6.49/11.56 1.36/3.17 1.16/2.66 0.93/2.18 0.89/2.10 0.64/1.77
UTOWN 2.82/4.24 0.41/0.96 0.78/1.88 0.59/1.43 0.34/0.86 0.32/0.84

AVG 4.66/7.90 0.97/2.27 0.76/1.81 0.76/1.81 0.62/1.48 0.48/1.31

TABLE III
ABLATION STUDY FOR GAMMA ON CROSS. ADE/FDE ARE REPORTED.

w/o
kinematic
constraints

w/o
polygon

representation

w/o
intention
inference

w/o
attention
inference

w/o
responsibility

inference
GAMMA

0.68/1.84 0.84/2.07 0.96/2.29 0.65/1.80 0.65/1.77 0.64/1.77

We also compare GAMMA with TrafficPredict, which is
designed specifically for heterogeneous traffic agents. SGAN
and SGAN-ave are also added for comparison.

We show the ADE and FDE for all algorithms in Table II.
Clearly, GAMMA outperforms all the baselines, especially
for the challenging CROSS dataset, where various types of
traffic agents move in a highly interactive manner. See the
supplementary material or https://youtu.be/aNWZdCdCL0M
for a video of prediction on CROSS dataset.

We further select three example scenes in CROSS and
visualize the predictions in Fig. 4. Fig. 4a explains why
PORCA does not predict well: it does not consider kinematic
constraints and hence sometimes produces infeasible trajec-
tories. Fig. 4b explains why SGAN does not predict well:
it does not explicitly model intentions and hence sometimes
produces trajectories pointing to wrong directions. Fig. 4c
shows GAMMA successfully predicts a curving trajectory
to the goal because it takes into account both the kinematics
and the intentions while PORCA and SGAN fail to do so.

C. Ablation Study

To study the importance of the five components of the mo-
tion model, we conduct an ablation study. We test GAMMA
in the absence of each component while holding others
constant. For GAMMA w/o kinematic constraints, we set
all agents to be holonomic. For GAMMA w/o polygon
representation, we set all agents to be disc-shaped. For
GAMMA w/o intention inference, we set the intention of
all the agents to keeping moving at current velocity. For
GAMMA w/o attention inference, we set the attention of all
the agents to be 1. For GAMMA w/o responsibility inference,
we set the responsibility of all the agents to be 0.5. We
select CROSS as the testing dataset. The results are presented

TABLE IV
SPEED (IN SECOND) COMPARISON WITH SGAN AND SRLSTM OF DIFFERENT

BATCH SIZE (bs). THE AVERAGE TIME EACH APPROACH TAKES TO PREDICT ONE

TRAJECTORY IS REPORTED. WE ACHIEVE 8.04X SPEEDUP AS COMPARED TO

SGAN (bs = 1). ALL APPROACHES ARE BENCHMARKED ON A WORKSTATION

WITH INTEL(R) CORE(TM) I7-7700K CPU AND NVIDIA GTX 1080 GPU.

SGAN
(bs = 1)

SGAN
(bs = 64)

SRLSTM
(bs = 1)

SRLSTM
(bs = 4) GAMMA

run time 3.15e-3 1.80e-3 2.32e-3 2.19e-3 3.92e-4
speed-up 1x 1.75x 1.36x 1.44x 8.04x

in Table III. As we can see, each of the five components
contributes to the performance gain of GAMMA. Kinematic
constraints, polygon representation, and intention inference
play a more important role in improving the model.

D. Speed Comparison

A motion prediction model needs to run sufficiently fast
so that it can be used in autonomous driving which requires
the robot vehicle to predict the myriad future motions.
We compare the speed of our approach with those of two
baselines, SGAN and SRLSTM. In reality, we have to predict
the motions in chronological order since the observations for
predictions come in chronological order. Therefore, for a fair
and reasonable comparison, we set the batch size of SGAN
and SRLSTM to 1 to avoid predicting trajectories before
the observations actually come. We compare their average
running time for predicting one trajectory in Table IV. The
results of SGAN and SRLSTM with their original batch size
(64 and 4, respectively) are also reported. Our approach is
8.04x faster than SGAN with batch size of 1.

V. CONCLUSIONS AND FUTURE WORK

We developed GAMMA, a general motion prediction
model that models heterogeneous traffic agents with dif-
ferent physical and behavioral constraints. We proposed a
unified framework of constrained geometry optimization that
incorporates key factors for motion prediction including
kinematics, geometry, intention, attention, and responsibility.
Experimental results show that GAMMA significantly out-
performs state-of-the-art approaches on various real-world
datasets in terms of both prediction accuracy and efficiency.

Currently, we only used simple models for intention,
attention, and responsibility. We plan to investigate more
sophisticated models for them in order to handle complex
scenarios. Note that the GAMMA framework can be easily
extended to incorporate more factors, such as courtesy,
patience, social comfort zones, etc..

https://youtu.be/aNWZdCdCL0M
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