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Abstract—Reinforcement learning provides a general frame-
work for learning robotic skills while minimizing engineering
effort. However, most reinforcement learning algorithms assume
that a well-designed reward function is provided, and learn a
single behavior for that single reward function. Such reward
functions can be difficult to design in practice. Can we instead
develop efficient reinforcement learning methods that acquire
diverse skills without any reward function, and then re-purpose
these skills for downstream tasks? In this paper, we demonstrate
that a recently proposed unsupervised skill discovery algorithm
can be extended into an efficient off-policy method, making it suit-
able for performing unsupervised reinforcement learning in the
real world. Firstly, we show that our proposed algorithm provides
substantial improvement in learning efficiency, making reward-
free real-world training feasible. Secondly, we move beyond the
simulation environments and evaluate the algorithm on real
physical hardware. On quadrupeds, we observe that locomotion
skills with diverse gaits and different orientations emerge without
any rewards or demonstrations. We also demonstrate that the
learned skills can be composed using model predictive control
for goal-oriented navigation, without any additional training.

I. INTRODUCTION

Reinforcement learning (RL) has the potential of enabling
autonomous agents to exhibit intricate behaviors and solve
complex tasks from high-dimensional sensory input without
hand-engineered policies or features [57, 51, 40, 36, 16].
These properties make this family of algorithms particularly
applicable to the field of robotics where hand-engineering
features and control policies have proven to be challenging
and difficult to scale [30, 28, 52, 29, 17, 26]. However,
applying RL to real-world robotic problems has not fully
delivered on its promise. One of the reasons for this is that
the assumptions that are required in a standard RL formulation
are not fully compatible with the requirements of real-world
robotics systems. One of these assumptions is the existence
of a ground truth reward signal, provided as part of the task.
While this is easy in simulation, in the real world this often
requires special instrumentation of the setup, as well as the
ability to reset the environment after every learning episode,
which often requires tailored reset mechanisms or manual
labor. If we could relax some of these assumptions, we may
be able to fully utilize the potential of RL algorithms in real-
world robotic problems.

In this context for robotics, the recent work in unsupervised
learning becomes relevant — we can learn skills without any
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Fig. 1. A 12 degree of freedom quadruped (D’Kitty) discovers diverse
locomotion skills without any rewards or demonstrations. We develop
off-DADS, an asynchronous and off-policy version of Dynamics-
Aware Discovery of Skills (DADS) [55], that enables sample-efficient
skill discovery based on mutual-information based optimization.

external reward supervision and then re-purpose those skills to
solve downstream tasks using only a limited amount of inter-
action. Of course, when learning skills without any reward su-
pervision, we have limited control over the kinds of skills that
emerge. Therefore, it is critical for unsupervised skill learning
frameworks to optimize for diversity, so as to produce a large
enough repertoire of skills such that potentially useful skills
are likely to be part of this repertoire. In addition, a framework
like this needs to offer the user some degree of control over the
dimensions along which the algorithm explores. Prior works in
unsupervised reinforcement learning [46, 41, 48, 2, 13, 14, 55]
have demonstrated that interesting behaviors can emerge from
reward-free interaction between the agent and environment. In
particular, [13, 14, 55] demonstrate that the skills learned
from such unsupervised interaction can be harnessed to solve
downstream tasks. However, due to their sample-inefficiency,
these prior works in unsupervised skill learning have been
restricted to simulation environments (with a few exceptions
such as Baranes and Oudeyer [5], Pong et al. [49], Lee et al.
[34]) and their feasibility of executing on real robots remains
unexplored.

In this paper, we address the limiting sample-inefficiency
challenges of previous reward-free, mutual-information-based
learning methods and demonstrate that it is indeed feasible to
carry out unsupervised reinforcement learning for acquisition
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of robotic skills. To this end, we build on the work of Sharma
et al. [55] and derive a sample-efficient, off-policy version
of a mutual-information-based, reward-free RL algorithm,
Dynamics-Aware Discovery of Skills (DADS), which we refer
to as off-DADS. Our method uses a mutual-information-based
objective for diversity of skills and specification of task-
relevant dimensions (such as x-y location of the robot) to
specify where to explore. Moreover, we extend off-DADS to
be able to efficiently collect data on multiple robots, which
together with the efficient, off-policy nature of the algorithm,
makes reward-free real-world robotics training feasible. We
evaluate the asynchronous off-DADS method on D’Kitty, a
compact cost-effective quadruped, from the ROBEL robotic
benchmark suite [3]. We demonstrate that diverse skills with
different gaits and navigational properties can emerge, without
any reward or demonstration. We present simulation experi-
ments that indicate that our off-policy algorithm is up to 4x
more efficient than its predecessor. In addition, we conduct
real-world experiments showing that the learned skills can
be harnessed to solve downstream tasks using model-based
control, as presented in [55].

II. RELATED WORK

Our work builds on a number of recent works [17, 33, 26,
37, 19, 44] that study end-to-end reinforcement learning of
neural policies on real-world robot hardware, which poses
significant challenges such as sample-efficiency, reward en-
gineering and measurements, resets, and safety [17, 11, 60].
Gu et al. [17], Kalashnikov et al. [26], Haarnoja et al.
[19], Nagabandi et al. [44] demonstrate that existing off-policy
and model-based algorithms are sample efficient enough for
real world training of simple manipulation and locomotion
skills given reasonable task rewards. Eysenbach et al. [12], Zhu
et al. [60] propose reset-free continual learning algorithms and
demonstrate initial successes in simulated and real environ-
ments. To enable efficient reward-free discovery of skills, our
work aims to address the sample-efficiency and reward-free
learning jointly through a novel off-policy learning framework.

Reward engineering has been a major bottleneck not only in
robotics, but also in general RL domains. There are two kinds
of approaches to alleviate this problem. The first kind involves
recovering a task-specific reward function with alternative
forms of specifications, such as inverse RL [45, 1, 61, 22]
or preference feedback [8]; however, these approaches still
require non-trivial human effort. The second kind proposes
an intrinsic motivation reward that can be applied to dif-
ferent MDPs to discover useful policies, such as curiosity
for novelty [53, 46, 54, 6, 47, 9, 31], entropy maximiza-
tion [23, 49, 34, 15], and mutual information [27, 25, 10, 38,
39, 14, 13, 41, 55]. Ours extends the dynamics-based mutual-
information objective from Sharma et al. [55] to sample-
efficient off-policy learning.

Off-policy extension to DADS [55] poses challenges beyond
those in standard RL [50, 24, 59, 42]. Since we learn an
action abstraction that can be related to a low-level policy
in hierarchical RL (HRL) [58, 56, 32, 4, 43], we encounter

similar difficulties as in off-policy HRL [43, 35]. We took
inspirations from the techniques introduced in [43] for stable
off-policy learning of a high-level policy; however, on top of
the non-stationarity in policy, we also need to deal with the
non-stationarity in reward function as our DADS rewards are
continually updated during policy learning. We successfully
derive a novel off-policy variant of DADS that exhibits stable
and sample-efficient learning.

III. BACKGROUND

In this section, we setup the notation to formally intro-
duce the reinforcement learning problem and the algorithmic
foundations of our proposed approach. We work in a Markov
decision process (MDP) M = (S,A, p, r), where S denotes
the state space of the agent, A denotes the action space of the
agent, p : S⇥S⇥A! [0,1) denotes the underlying (stochas-
tic) dynamics of the agent-environment which can be sampled
starting from the initial state distribution p0 : S ! [0,1),
and a reward function r : S ⇥ A ! [0,1). The goal of the
optimization problem is to learn a controller ⇡(at | st) which
maximizes E[

P
t �

tr(st, at)] for a discount factor � 2 [0, 1).
Within deep reinforcement learning, there are several

methods to optimize this objective. In particular, off-
policy methods centered around learning a Q-function [36,
20, 16, 26] are known to be suitable for reinforcement
learning on robots. At a high level, algorithms estimate
Q⇡(st, at) = E[

P
i�t �

i�tr(si, ai)], where the expectation is
taken over state-action trajectories generated by the execut-
ing policy ⇡ in the MDP M after taking action at in the
state st. Crucially, Q⇡ can be estimated using data col-
lected from arbitrary policies using the temporal-difference
learning (hence off-policy learning). For continuous or large
discrete action spaces, a parametric policy can be updated
to ⇡0(a | s) argmaxaQ⇡(s, a), which can be done approx-
imately using stochastic gradient descent when Q is differ-
entiable with respect to a [36, 21, 18]. While the off-policy
methods differ in specifics of each step, they alternate between
estimating Q⇡ and updating ⇡ using the Q⇡ till convergence.
The ability to use trajectories sampled from arbitrary policies
enables these algorithms to be sample efficient.

A. Unsupervised Reinforcement Learning
In an unsupervised learning setup, we assume a MDP

M = (S,A, p) without any reward function r, retaining the
previous definitions and notations. The objective is to sys-
tematically acquire diverse set of behaviors using autonomous
exploration, which can subsequently be used to solve down-
stream tasks efficiently. To this end, a skill space Z is
defined such that a behavior z 2 Z is defined by the policy
⇡(a|s, z). To learn these behaviors in a reward-free setting,
the information theoretic concept of mutual information is
generally employed. Intuitively, mutual information I(x, y)
between two random variables x, y is high when given x, the
uncertainty in value of y is low and vice-versa. Formally,

I(x, y) =
Z

p(x, y) log
p(x, y)

p(x)p(y)
dxdy
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Dynamics-aware Discovery of Skills (DADS) [55] uses
the concept of mutual information to encourage skill dis-
covery with predictable consequences. It uses the follow-
ing conditional mutual information formulation to motivate
the algorithm: I(s0, z | s) where s0 denotes the next
state observed after executing the behavior z from the
state s. The joint distribution can be factorized as follows:
p(z, s, s0) = p(z)p(s | z)p(s0 | s, z), where p(z) denotes the
prior distribution over Z , p(s | z) denotes the stationary
distribution induced by ⇡(a | s, z) under the MDP M and
p(s0 | s, z) =

R
p(s0 | s, a)⇡(a | s, z)da denotes the transition

dynamics. The conditional mutual information can be written
as

I(s0, z | s) =
Z

p(z, s, s0) log
p(s0 | s, z)
p(s0 | s) dzdsds0

At a high level, optimizing for I(s0, z | s) encourages
⇡ to generate trajectories such that s0 can be determined
from s, z (predictability) and simultaneously encourages ⇡ to
generate trajectories where s0 cannot be determined well from
s without z (diversity). Note, computing I is intractable due
to intractability of p(s0 | s, z) and p(s0 | s). However, one can
motivate the following reinforcement learning maximization
for ⇡ using variational inequalities and approximations as
discussed in [55]:

J(⇡) = Ez,s,s0⇠p(z,s,s0)[r(s, z, s
0)]

r(s, z, s0) =
q�(s0 | s, z)PL

i=1 q�(s
0 | s, zi)

+ logL

for {zi}Li=1 ⇠ p(z) where q� maximizes

J(q�) = Ez,s,s0⇠p(z,s,s0)[log q�(s
0 | s, z)]

Sharma et al. [55] propose an on-policy alternating optimiza-
tion: At iteration t, collect a batch B(t) of trajectories from
the current policy ⇡(t) to simulate samples from p(z, s, s0),
update q(t)� ! q(t+1)

� on B(t) using stochastic gradient descent
to approximately maximize J(q�), label the transitions with
reward r(t+1)(s, z, s0) and update ⇡(t) ! ⇡(t+1) on B(t)

using any reinforcement learning algorithm to approximately
maximize J(⇡). Note, the optimization encourages the policy
⇡ to produce behaviors predictable under q�(s0|s, z), while
rewarding the policy for producing diverse behaviors for
different z 2 Z . This can be seen from the definition of
r(s, z, s0): The numerator will be high when the transition
s ! s0 has a high log probability under the current skill
z (high q�(s0 | s, z) implies high predictability), while the
denominator will be lower if the transition has low probability
under zi (low q�(s0 | s, zi) implies q� is expecting a different
transition under the skill zi).

Interestingly, the variational approximation q�(s0 | s, z),
called skill dynamics, can be used for model-predictive con-
trol. Given a reward function at test-time, the sequence of
skill z 2 Z can be determined online using model-predictive
control by simulating trajectories using skill dynamics q�.

IV. TOWARDS REAL-WORLD UNSUPERVISED LEARNING

The broad goal of this section is to motivate and present
the algorithmic choices required for accomplishing reward-
free reinforcement learning in the real-world. We address
the issue of sample-efficiency of learning algorithms, which
is the main bottleneck to running the current unsupervised
learning algorithms in the real-world. In the same vein, an
asynchronous data-collection setup with multiple actors can
substantially accelerate the real-world execution. We exploit
the off-policy learning enterprise to demonstrate unsupervised
learning in the real world, which allows for both sample-
efficient and asynchronous data collection through multiple
actors [26].

A. Off-Policy Training of DADS
We develop the off-policy variant of DADS, which we

call off-DADS. For clarity, we can restate J(⇡) in the more
conventional form of expected discounted sum of rewards.
Using the definition of the stationary distribution p(s | z) =PT

t=0 �
tp(st = s | z) for a �-discounted episodic setting of

horizon T , we can write:

J(⇡) = E[
T�1X

t=0

�tr(st, z, st+1)]

where the expectation has been taken with respect to trajec-
tories generated by ⇡(a | s, z) for z ⇠ p(z). This has been
explicitly shown in Appendix A. Now, we can write the Q-
value function as

Q⇡(st, at) = E[
X

i�t

�i�tr(st, z, st+1)]

For problems with a fixed reward function, we can use off-
the-shelf off-policy reinforcement learning algorithms like soft
actor-critic [20, 21] or deep deterministic policy gradient [36].
At a high level, we use the current policy ⇡(t) to sample a
sequence of transitions from the environment and add it to the
replay buffer R. We uniformly sample a batch of transitions
B(t) = {(si, zi, ai, s0i)}Bi=0 from R and use it to update ⇡(t)

and Q⇡(t)

.
However, in this setup: (a) the reward is non-stationary as

r(s, z, s0) depends upon q�, which is learned simultaneously
to ⇡, Q⇡ and (b) learning q� involves maximizing J(q�) which
implicitly relies on the current policy ⇡ and the induced
stationary distribution p(s | z). For (a), we recompute the
reward r(s, z, s0) for the batch B(t) using the current iterate
q(t)� . For (b), we propose two alternative methods:

• We use samples from current policy ⇡(t) to maximize
J(q�). While this does not introduce any additional bias,
it does not take advantage of the off-policy data available
in the replay buffer.

• Reuse off-policy data while maximizing J(q�).
To re-use off policy data for learning q�, we have to consider
importance sampling corrections, as the data has been sampled
from a different distribution. While we can derive an unbiased
gradient estimator, as discussed in Appendix B, we motivate
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Algorithm 1: Asynchronous off-DADS
Initialize parameters ⇡(a | s, z), q�(s0 | s, z);
Initialize replay buffer R;
// collector threads
while not done do

Sync ⇡c  ⇡ ;
Sample z ⇠ p(z);
Collect episode using ⇡c; // store ⇡c(a | s, z)

end
// training thread
s 0, n 0;
while not done do

while n < s+ newsteps do
Sync B; n+ = size(B); // get data from actors
R R [ B;

end
for i 1 to Tq do

Sample {sj , zj , aj , s0j ,⇡c(aj | sj , zj)}
Bq

j=1 ⇠ R;
wj  clip( ⇡(aj |sj ,zj)

⇡c(aj |sj ,zj) ,
1
↵ ,↵);

Update q� using {sj , zj , s0j , wj)}
Bq

j=1;
end
for i 1 to T⇡ do

Sample {sj , zj , aj , s0j ,⇡c(aj | sj , zj)}B⇡
j=1 ⇠ R;

rj  r(sj , zj , s0j); // DADS reward
Update ⇡ using {sj , zj , aj , s0j , rj)}

B⇡
j=1;

end
s n;

end

an alternate estimator which is simpler and more stable nu-
merically, albeit biased. Consider the definition of J(q�):

J(q�) = Ez,s,s0⇠p

⇥
log q�(s

0 | s, z)
⇤

=

Z
p(z)p(s | z)p(s0 | s, z) log q�(s0 | s, z)dzdsds0

=

Z
p(z)p(s | z)⇡(a | s, z)p(s0 | s, a)

log q�(s
0 | s, z)dzdsdads0

where we have used the fact that
p(s0 | s, z) =

R
p(s0 | s, a)⇡(a | s, z)da. Now, consider that

the samples have been generated by a behavior policy ⇡c(a |
s, z). The corresponding generating distribution can be written
as: p⇡c(z, s, s0) =

R
p(z)pc(s | z)⇡(a | s, z)p(s0 | s, a)da,

where the prior p(z) over Z and the dynamics p(s0 | s, a) are
shared across all policies, and pc(s | z) denotes the stationary
state distribution induced by ⇡c. We can rewrite J(q�) as

J(q�) =

Z
p(z)pc(s | z)⇡c(a | s, z)p(s0 | s, a)

p(s | z)⇡(a | s, z)
pc(s | z)⇡c(a | s, z) log q�(s

0 | s, z)dzdsdads0

which is equivalent to

J(q�) = Ez,s,a,s0⇠p⇡c

h p(s | z)⇡(a | s, z)
pc(s | z)⇡c(a | s, z) log q�(s

0 | s, z)
i

Thus, the gradient for J(q�) with respect to � can be written
as:

r�J(q�) = E
h p(s | z)⇡(a | s, z)
pc(s | z)⇡c(a | s, z)r� log q�(s

0 | s, z)
i

⇡ 1

Bq

BqX

i=1

h ⇡(ai | si, zi)
⇡c(ai | si, zi)

r� log q�(s
0
i | si, zi)

i

The estimator is biased because we compute the importance
sampling correction as wi = clip( ⇡(ai|si,zi)

⇡c(ai|si,zi) ,
1
↵ ,↵) which

ignores the intractable state-distribution correction p(s|z)
pc(s|z) [18].

This considerably simplifies the estimator while keeping the
estimator numerically stable (enhanced by clipping) as com-
pared to the unbiased estimator derived in Appendix B. In
context of off-policy learning, the bias due to state-distribution
shift can be reduced using a shorter replay buffer.

Our final proposed algorithm is summarized in the Algo-
rithm 1. At a high level, we use n actors in the environment
which use the latest copy of the policy to collect episodic data.
The centralized training script keeps adding new episodes to
the shared replay buffer R. When a certain threshold of new
experience has been added to R, the buffer is uniformly sam-
pled to train q� to maximize J(q�). To update ⇡, we sample
the buffer uniformly again and compute r(s, z, s0) for all the
transitions using the latest q�. The labelled transitions can
then be passed to any off-the-shelf off-policy reinforcement
learning algorithm to update ⇡ and Q⇡ .

V. EXPERIMENTS

In this section, we experimentally evaluate our robotic
learning method, off-DADS, for unsupervised skill discovery.
First, we evaluate the off-DADS algorithm itself in isolation,
on a set of standard benchmark tasks, to understand the gains
in sample efficiency when compared to DADS proposed in
[55], while ablating the role of hyperparameters and variants
of off-DADS. Then, we evaluate our robotic learning method
on D’Kitty from ROBEL [3], a real-world robotic benchmark
suite. We also provide preliminary results on D’Claw from
ROBEL, a manipulation oriented robotic setup in Appendix D.

A. Benchmarking off-DADS
We benchmark off-DADS and its variants on continuous

control environments from OpenAI gym [7], similar to [55].
We use the HalfCheetah, Ant, and Humanoid environments,
with state-dimensionality 18, 29, and 47 respectively. We also
consider the setting where the skill-dynamics only observes the
global x, y coordinates of the Ant. This encourages the agent
to discover skills which diversify in the x, y space, yielding
skills which are more suited for locomotion [13, 55].

To evaluate the performance of off-DADS and the role of
hyperparameters, we consider the following variantions:

• Replay Buffer Size: We consider two sizes for the replay
buffer R: 10,000 (s) and 1,000,000 (l). As alluded to,



(a) Half-Cheetah

(b) Ant

(c) Ant (x-y)

(d) Humanoid

Fig. 2. Sample efficiency comparison of off-DADS with DADS
(red). We control the effect of state-distribution shift using length
of replay buffers (s implies short and l implies long replay buffer)
and importance sampling corrections (1 and 10 being the values of
the clipping parameter). We observe that all variants of off-DADS
outperforms DADS in terms of sample efficiency, and using a short
replay buffer with importance sampling clip parameter set to 10
consistently gives the best performance.

this controls how on-policy the algorithm is. A smaller
replay buffer will have lower bias due to state-distribution
shift, but can lose sample efficiency as it discards samples
faster [18].

• Importance Sampling: We consider two settings for the
clipping parameter in the importance sampling correction:
↵ = 1 and ↵ = 10. The former implies that there
is no correction as all the weights are clipped to 1.
This helps evaluate whether the suggested importance
sampling correction gives any gains in terms of sample
efficiency.

This gives us four variants abbreviated as s1, s10, l1 and
l10. We also evaluate against the off-DADS variant where
the skill-dynamics is trained on on-policy samples from the
current policy. This helps us evaluate whether training skill-
dynamics on off-policy data can benefit the sample efficiency
of off-DADS. Note, while this ablation helps us understand
the algorithm, this scheme would be wasteful of samples in
asynchronous off-policy real world training, where the data
from different actors could potentially be coming from differ-
ent (older) policies. Finally, we benchmark against the baseline
DADS, as formulated in [55]. The exact hyperparameters for
each of the variants are listed in Appendix C. We record
curves for five random seeds for the average intrinsic reward
r(s, z, s0) as a function of samples from the environment and
report the average curves in Figure 2.

We observe that all variants of off-DADS consistently out-
perform the on-policy baseline DADS on all the environments.
The gain in sample efficiency can be as high as four times,
as is the case for Ant (x-y) environment where DADS takes
16 million samples to converge to the same levels as shown

Fig. 3. (Left) D’Kitty robot from the ROBEL benchmark. (Right)
D’Kitty with the LED configuration for PhaseSpace tracking.

for off-DADS (about 0.8 average intrinsic reward). We also
note that irrespective of the size of the replay buffer, the
importance sampling correction with ↵ = 10 outperforms or
matches ↵ = 1 on all environments. This positively indicates
that the devised importance sampling correction makes a better
bias-variance trade-off than no importance sampling. The best
performing variant on every environment except Ant (x-y) is
the s10. While training skill-dynamics on-policy provides a
competitive baseline, the short replay buffer and the clipped
importance sampling counteract the distribution shift enough
to benefit the overall sample efficiency of the algorithm.
Interestingly on Ant (x-y), the best performing variant is l10.
The long replay buffer variants are slower than the short replay
buffer variants but reach a higher average intrinsic reward. This
can be attributed to the smaller state-space for skill-dynamics
(only 2-dimensional) and thus, the state-distribution correction
required is potentially negligible but at the same time the off-
policy data is helping learn better policies.

B. Real-world Training
We now demonstrate the off-DADS can be deployed for

real world reward-free reinforcement learning. To this end, we
choose the ROBEL benchmark [3]. In particular, we deploy
off-DADS on D’Kitty shown in the Figure 3. D’Kitty is a
12 DOF compact quadruped capable of executing diverse
gaits. We also provide preliminary results for D’Claw, a
manipulation-oriented setup from ROBEL in Appendix D.

C. D’Kitty Experimental Setup
To run real-world training, we constructed a walled 4m⇥4m

cordoned area, shown in Figure 4. The area is equipped
with 5 PhaseSpace Impulse X2 cameras that are equidistantly
mounted along two bounding orthogonal walls. These cameras
are connected to a PhaseSpace Impulse X2E motion capture
system which performs 6 DOF rigid body tracking of the
D’Kitty robots’ chassis at 480Hz. We use two D’Kitty robots
for data collection and training in experiment. Each D’Kitty,
we attach one PhaseSpace LED controller which controls 8
active LED markers that are attached to the top surface of the
D’Kitty chassis as shown in Figure 3. Each D’Kitty is tethered



Fig. 4. Two quadrupeds in a cordoned area. The LEDs allow the
robots and the object to be tracked using the PhaseSpace cameras.

via 3 cables: USB serial to the computer running off-DADS,
12V/20A power to the D’Kitty robot, and USB power to the
LED controller. To reduce wire entanglement with the robot,
we also have an overhead support for the tethering wires.

Dynamixel Property Value
Model XM-W210

Control Mode Position Control
Baudrate 1 Mbps

PWM Limit 450 (50.85%)
Voltage Range 9.5V to 16V

Fig. 5. Dynamixel motor configuration for the D’Kitty robots.

D. Algorithmic Details
We first test the off-DADS algorithm variants in simulation.

For the D’Kitty observation space, we use the Cartesian posi-
tion and Euler orientation (3 + 3), joint angles and velocities
(12 + 12), the last action executed by the D’Kitty (12) and the
upright (1), which is the cosine of the orientation with global
z-axis. The concatenated observation space is 43-dimensional.
Hyperparameter details for off-DADS (common to all variants)
are as follows: The skill space Z is 2D with support over
[�1, 1]2. We use a uniform prior p(z) over Z . We parameterize
⇡(a | s, z), Q⇡(s, a, z) and q�(s0 | s, z) using neural networks
with two hidden layers of size 512. The output of ⇡(a | s, z)
is parameterized by a normal distribution N (µ,⌃) with a
diagonal covariance which is scaled to [�1, 1] using tanh
transformation. For q�, we reduce the observation space to the
D’Kitty co-ordinates (x, y). This encourages skill-discovery
for locomotion behaviors [55, 13]. We parameterize q� to
predict �s = s0 � s, a general trick in model-based control
which does not cause any loss in representational power as
the next state can be recovered by adding the prediction to the
current state. We use soft-actor critic [20] to optimize ⇡, Q⇡ .
To learn q�, we sample batches of size 256 and use the Adam
optimizer with a fixed learning rate of 0.0003 for Tq = 8
steps. For soft-actor critic, we again use Adam optimizer with
a fixed learning rate of 0.0003 while sampling batches of size

Fig. 6. (Left) Training curves for D’Kitty in both simulation and
real-world. We find the off-DADS with a short replay and importance
sampling clipping parameter ↵ = 10 to be the most suitable for the
real-world learning. We find the real-world learning curve closely
follows the simulation learning curve.

256 for 128 steps. Discount factor � = 0.99, with a fixed
entropy coefficient of 0.1. For computing the DADS reward
r(s, z, s0), we set L = 100 samples from the prior p(z). We
set the episode length to be 200, which terminates prematurely
if the upright coefficient falls below 0.9 (that is the D’Kitty is
tilting more than 25 degrees from the global z-axis).

In terms of off-DADS variants, we evaluate the four variants
discussed in the previous section. For all the variants, we
collect at least 500 steps in the simulation before updating
q� and ⇡. The observations for the variants resemble those
of the Ant (x-y) environment. We observe that the variants
with a replay buffer of size 10, 000 are much faster to learn
than the replay buffer of size 1, 000, 000. Asymptotically, we
observe the long replay buffer outperforms the short replay
buffer though. We also observe setting ↵ = 10 benefits the
cause of sample efficiency.

For the real robotic experiment, we choose the hyperpa-
rameters R to be of size 10, 000 and we set ↵ = 10.
While asymptotically better performance is nice, we prioritized
sample efficiency. For the real experiment, we slightly modify
the collection condition. For every update of q� and ⇡, we
ensure there are 200 new steps and at least 3 new episodes in
the replay buffer R.

E. Emergent Locomotion Behaviors

With the setup and hyperparameters described in the previ-
ous sections, we run the real-world experiment. The experi-
ment was ran over 3 days, with the effective training time on
the robot being 20 hours (including time spent in maintaining
the hardware). We collected around 300, 000 samples in total
as shown in the learning curve in Figure 6. We capture
the emergence of locomotion skills in our video supplement.
Figure 1 and Figure 7 show some of the diversity which
emerges in skills learned by D’Kitty using off-DADS, in terms
of orientation and gaits.



Fig. 7. Diverse gaits learned by the D’Kitty in our real world
experiments.

Broadly, the learning occurs in the following steps: (a)
D’Kitty first tries to learn how to stay upright to prolong
the length of the episode. This happens within the first hour
of the episode. (b) It spends the next few hours trying to
move around while trying to stay upright. These few hours,
the movements are most random and the intrinsic reward is
relatively low as they do not correlate well with z. (c) About
5-6 hours into the training, it starts showing a systematic gait
which it uses to move in relatively random directions. This
is when the intrinsic reward starts to rise. (d) A few more
hours of training and this gait is exploited to predictably move
in specific directions. At this point the reward starts rising
rapidly as it starts diversifying the directions the agent can
move in predictably. Interestingly, D’Kitty uses two different
gaits to capture and grow in two different directions of motion,
which can be seen in the video supplement. (e) At about 16
hours of training, it can reliably move in different directions
and it is trying to further increase the directions it can
move in predictably. Supplementary videos are available here:
https://sites.google.com/view/dads-skill

One interesting difference from simulation where the
D’Kitty is unconstrained, is that the harnesses and tethering
despite best attempts restrain the movement of the real robot
to some extent. This encourages the agent to invest in multiple
gaits and use simpler, more reliable motions to move in
different directions.

F. Challenges in real-world training

We discuss some of the challenges encountered during
real-world reinforcement learning, particularly in context of
locomotive agents.

• Reset & Autonomous operation: A good initial state
distribution is necessary for the exploration to proceed
towards the desirable state distribution. In context of
locomotion, a good reset comprises of being in an upright
position and relocating away from the extremities of the
area. For the former, we tried two reset mechanisms: (a)
scripted mechanism, which is shown in the supplemen-

tary video and (b) reset detector which would continue
training if the D’Kitty was upright (based on height
and tilt with z-axis), else would wait (for human to
reset). However, (a) being programmatic is not robust and
does not necessarily succeed in every configuration, in
addition to being slow. (b) can be really fast considering
that D’Kitty is reasonably compact, but requires human
oversight. Despite human oversight, the reset detector
can falsely assume the reset is complete and initiate the
episode, which requires an episode filter to be written.
Relocating from the extremities back to the center is
a harder challenge. It is important because the tracker
becomes noisy in those regions while also curbing the
exploration of the policy. However, this problem only
arises when the agent shows significant skills to navigate.
There are other challenges besides reset which mandate
human oversight into the operation. Primarily, random
exploration can be tough on the robot, requiring mainte-
nance in terms of tightening of screws and sometimes,
replacing motors. We found latter can be avoided by
keeping the motor PWMs low (450 is good). While we
make progress towards reward-free learning in this work,
we leave it to future work to resolve problems on the way
to fully autonomous learning.

• Constrained space: For the full diversity of skills to
emerge, an ideal operation would have unconstrained
space with accurate tracking. However, realistically that
is infeasible. Moreover, real operation adds unmodelled
constraints over simulation environments. For example,
the use of harness to reduce wire entanglement with
the robot adds tension depending on the location. When
operating multiple D’Kitties in the same space, there can
be collisions during the operation. Likelihood of such
an event progressively grows through the training. About
two-fifths through the training, we started collecting with
only one D’Kitty in the space to avoid future collisions.
Halfway through the training, we decided to expand the
area to its limits and re-calibrate our tracking system for
the larger area. Despite the expansion, we were still short
on space for the operation of just one D’Kitty. To remedy
the situation, we started decreasing the episode length.
We went from 200 steps to 100, then to 80 and then
to 60. However, we observed that short episodes started
affecting the training curve adversarially (at about 300k
samples). Constrained by the physical limits, we finished
the training. While a reasonable skill diversity already
emerges in terms of gaits and orientations within the
training we conduct, as shown in Figure 1, more skills
should be discovered with more training (as suggested
by the simulation results as well as the fact the reward
curve has not converged). Nonetheless, we made progress
towards the conveying the larger point of reward-free
learning being realized in real-world.

https://sites.google.com/view/dads-skill


Distance Travelled 2.17± 0.59
Percentage of Falls 5%

Fig. 8. Distance (in m) travelled by skills sampled randomly from
the prior in 100 steps, which is 10s of execution time. We also report
the number of times D’Kitty falls before completing 100 steps. The
results have been averaged over 20 trials.

G. Harnessing Learned Skills

Qualitatively, we see that a diverse set of locomotive skills
can emerge from reward-free training. However, as has been
discussed in [55], these skills can be harnessed for downstream
tasks using model-based control on the learned skill-dynamics
q�(s0 | s, z). First, we partly quantify the learned skills in
Figure 8. We execute skills randomly sampled from the prior
and collect statistics for these runs. In particular, we find
that despite limited training, the skills are relatively robust
and fall in only 5% of the runs, despite being proficient in
covering distance. Interestingly, the learned skills can also be
harnessed for model-based control as shown in Figure 9. The
details for model-predictive control follow directly from [55],
which elucidates on how to to do so using skill-dynamics q�
and ⇡. We have included video supplements showing model-
predictive control in the learned skill space for goal navigation.

Fig. 9. Navigation via model-predictive-control over skills learned
by off-DADS. Using the skill-dynamics learned in the unsupervised
training, the planner composes skills to move towards the goal. The
trajectories visualized show movement of D’Kitty towards the goal
box, marked by a set of LED markers.

VI. CONCLUSION

In this work, we derived off-DADS, a novel off-policy
variant to mutual-information-based reward-free reinforcement
learning framework. The improved sample-efficiency from off-
policy learning enabled the algorithm to be applied on a
real hardware, a quadruped with 12 DoFs, to learn various
locomotion gaits under 20 hours without human-design reward
functions or hard-coded primitives. Given our dynamics-based
formulation from [55], we further demonstrate those acquired
skills are directly useful for solving downstream tasks such
as navigation using online planning with no further learning.
We detail the successes and challenges encountered in our
experiments, and hope our work could offer an important
foundation toward the goal of unsupervised, continual rein-
forcement learning of robots in the real world for many days
with zero human intervention.
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