

Learning from Unlabeled Data

Labeled data

Unlabeled data

Labeled data

9,999,9

999

Labeled data

Unlabeled data

Agenda

- Advancing Semi-Supervised Learning
 - Unsupervised Data Augmentation: small labeled set
 - *NoisyStudent*: large labeled set
- Meena Towards a human-like open-domain chatbot
- (next time) *ELECTRA* Efficient Language Pretraining

Semi-Supervised Learning (SSL)

SSL is apparently an important acronym & overloaded!

Yann LeCun @ylecun

I Now call it "self-supervised learning", because "unsupervised" is both a loaded and confusing term.

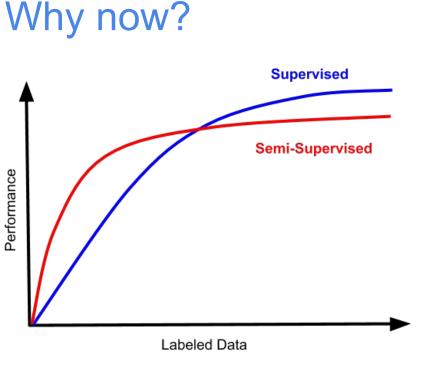
Why now?

The Quiet Semi-Supervised Revolution

Time to dust off that unlabeled data?

Vincent Vanhoucke Follow May 15, 2019 ⋅ 5 min read ★

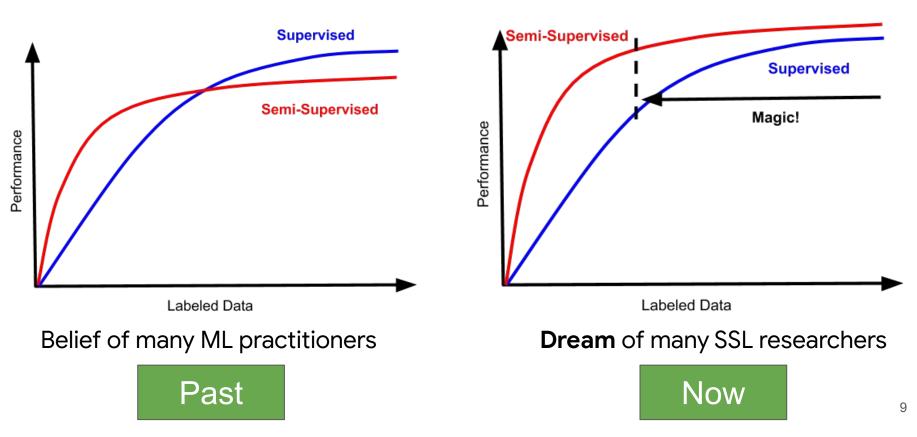
Our work "Unsupervised Data Augmentation (UDA)" was featured. https://towardsdatascience.com/the-quiet-semi-supervised-revolution-edec1e9ad8c



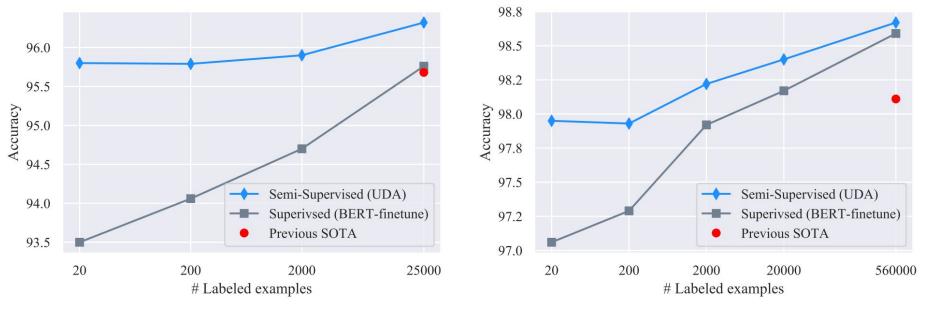
When there is enough labeled data, who cares about SSL?

Belief of many ML practitioners

Why now?



In our UDA paper:



(a) IMDb

(b) Yelp-2

Matches Vincent's mental picture: SSL > Supervised! Same for vision (CIFAR, SVHN)

Unsupervised Data Augmentation (UDA) for Consistency Training

Zihang Dai

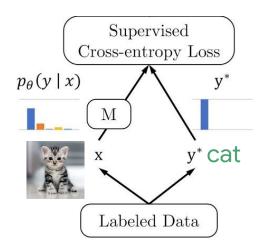
Eduard Hovy

Thang Luong

Quoc Le

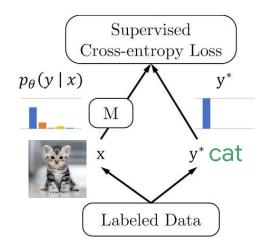
Paper: <u>https://arxiv.org/abs/1904.12848</u> Code: <u>https://github.com/google-research/uda</u>

Consistency Training in Semi-Supervised Learning

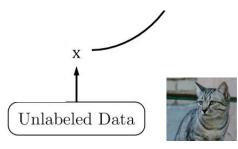


12

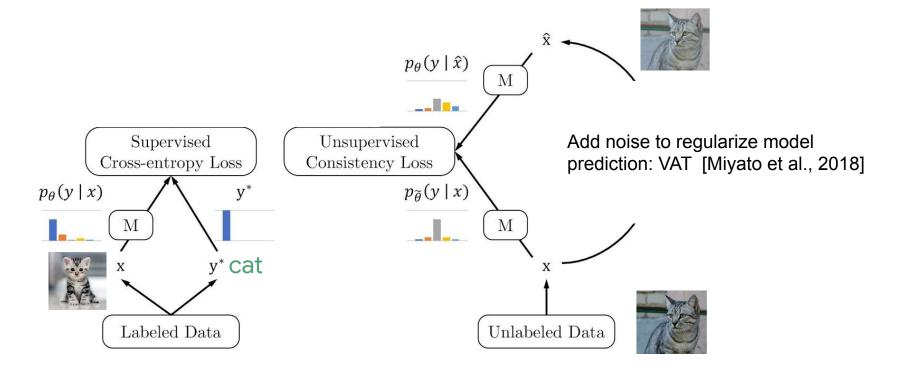
Consistency Training in Semi-Supervised Learning



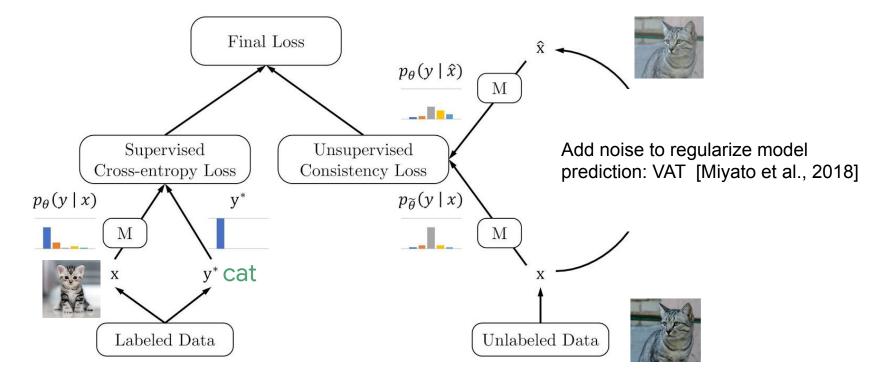
Add noise to regularize model prediction: VAT [Miyato et al., 2018]



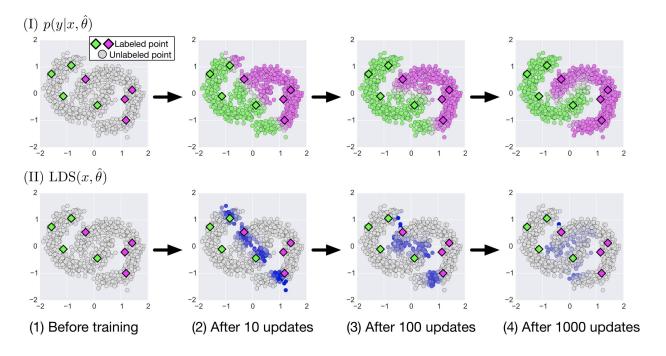
Consistency Training in Semi-Supervised Learning



Consistency Training in Semi-Supervised Learning

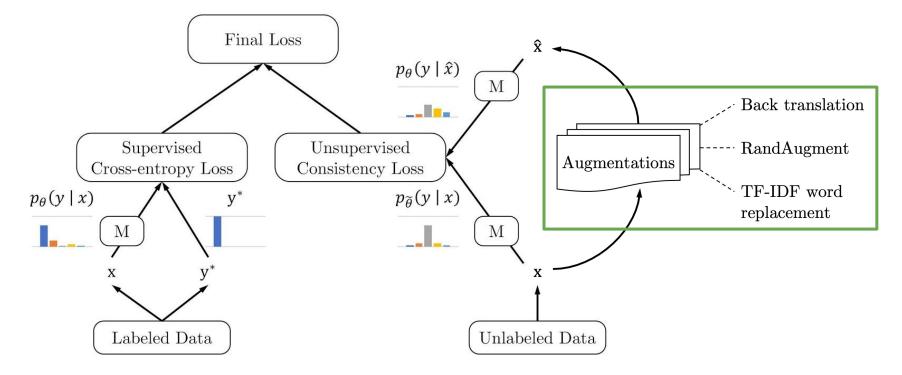


Label Propagation



Graph taken from VAT (Miyato et al. 2017)

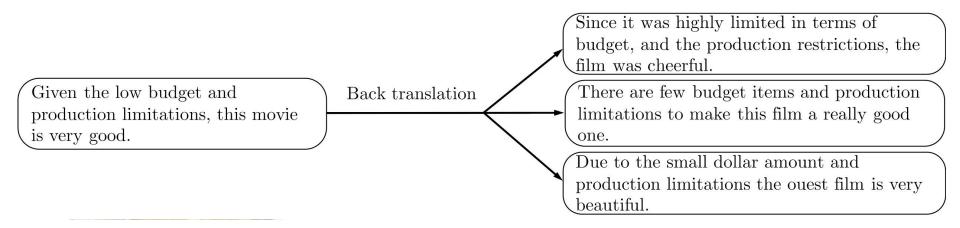
Unsupervised Data Augmentation (UDA)



UDA

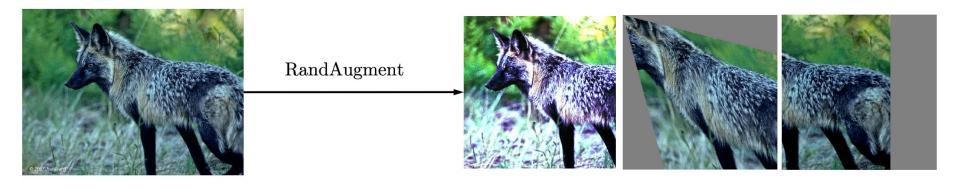
apply SOTA data augmentation to **unlabeled data** to improve **semi-supervised learning**

Augmentation provides Diverse and Valid Perturbations



- Back translation for Text Classification:
 - English -> French -> English
 - Sampling: diverse (high-temperature) vs valid (low-temperature).
 - Used in QANet (<u>Yu et al., 2018</u>) for labeled data only.

Augmentation injects task-specific knowledge



RandAugment (<u>Cubuk et al., 2019</u>) for Image Classification:
 Example policies: (Rotate, 0.8, 2), (Brightness, 0.8, 4)

Results

Ablation study on data augmentation

Augmentation	Sup	Semi-Sup
(# Sup examples)	(50k)	(4k)
Crop & flip	5.36	16.17
Cutout	4.42	6.42
RandAugment	4.23	5.29

Table 1: Error rates on CIFAR-10.

Ablation study on data augmentation

Augmentation (# Sup examples)	Sup (50k)	Semi-Sup (4k)	Augmentation (# Sup examples)	Sup (650k)	Semi-sup (2.5k)
Crop & flip	5.36	16.17	×	38.36	50.80
Cutout	4.42	6.42	Switchout	37.24	43.38
RandAugment	4.23	5.29	Back-translation	36.71	41.35

Table 1: Error rates on CIFAR-10.

Table 2: Error rate on Yelp-5.

State-of-the-art augmentation is important!

SSL Benchmarks on CIFAR-10 and SVHN (Sep, 2019)

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06
Mean Teacher (Tarvainen & Valpola, 2017)	Shake-Shake	26M	6.28 ± 0.15	-
Fast-SWA (Athiwaratkun et al., 2018)	Shake-Shake	26M	5.0	-
MixMatch (Berthelot et al., 2019)	WRN	26M	4.95 ± 0.08	-

SSL Benchmarks on CIFAR-10 and SVHN (Sep, 2019)

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06
Mean Teacher (Tarvainen & Valpola, 2017)	Shake-Shake	26M	6.28 ± 0.15	-
Fast-SWA (Athiwaratkun et al., 2018)	Shake-Shake	26M	5.0	-
MixMatch (Berthelot et al., 2019)	WRN	26M	4.95 ± 0.08	-
UDA (RandAugment)	WRN-28-2	1.5M	5.29 ± 0.25	$\textbf{2.55} \pm \textbf{0.09}$
UDA (RandAugment)	Shake-Shake	26M	3.7	-
UDA (RandAugment)	PyramidNet	26M	2.7	-

15% error reduction from previous SOTA (30% in Apr, 2019)

SSL Benchmarks on CIFAR-10 and SVHN (Sep, 2019)

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06
Mean Teacher (Tarvainen & Valpola, 2017)	Shake-Shake	26M	6.28 ± 0.15	-
Fast-SWA (Athiwaratkun et al., 2018)	Shake-Shake	26M	5.0	-
MixMatch (Berthelot et al., 2019)	WRN	26M	4.95 ± 0.08	-
UDA (RandAugment)	WRN-28-2	1.5M	5.29 ± 0.25	$\textbf{2.55} \pm \textbf{0.09}$
UDA (RandAugment)	Shake-Shake	26M	3.7	-
UDA (RandAugment)	PyramidNet	26M	2.7	-

Further advancing the SOTA with larger networks

Works follow UDA in using strong augmentation! Google Research

Algorithm	Artificial label augmentation	Prediction augmentation	Artificial label post-processing
TS [39]/II-Model [36]	Weak	Weak	None
Temporal Ensembling [21]	Weak	Weak	None
Mean Teacher [43]	Weak	Weak	None
Virtual Adversarial Training [28]	None	Adversarial	None
UDA [45]	Weak	Strong	Sharpening
MixMatch [3]	Weak	Weak	Sharpening
ReMixMatch [2]	Weak	Strong	Sharpening
FixMatch	Weak	Strong	Pseudo-labeling

FixMatch (Sohn et al, 2020) & ReMixMatch (Berthelot et al., 2019)

use **strong augmentation** (RandAugment, CTAugment)

(Table taken from FixMatch paper)

Summary

- Data augmentation is an effective perturbation for SSL.
- UDA significantly improves for both language and vision.
- UDA combines well with transfer learning, e.g., BERT.

Paper: <u>https://arxiv.org/abs/1904.12848</u> Code: <u>https://github.com/google-research/uda</u>

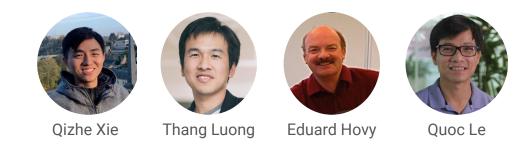
So far, success has only been in low-data regime!

Small labeled Data (CIFAR, SVHN)

State-of-the-art FixMatch, ReMixMatch UDA, MixMatch, S4L, ICT, VAT, etc. Large **labeled** Data (ImageNet)

No state-of-the art results

Self-training with Noisy Student improves ImageNet classification



Paper: <u>https://arxiv.org/abs/1911.04252</u> Code: <u>https://github.com/google-research/noisystudent</u>

4 simple steps:

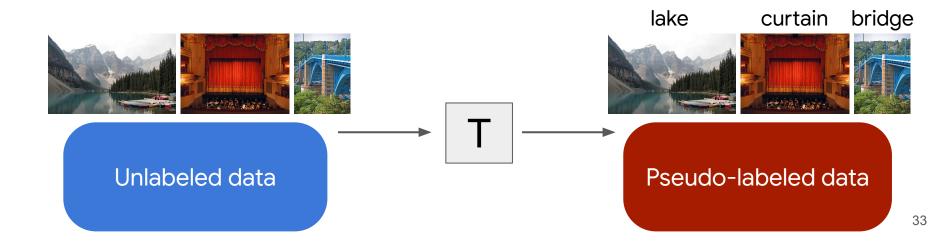
Google Research

4 simple steps:

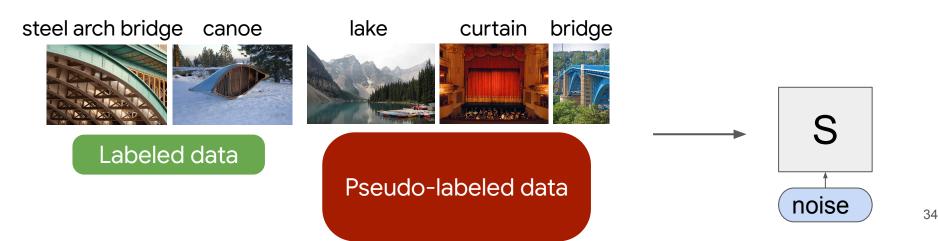
Google Research

1. Train a classifier on the labeled (L) data (teacher)

- 1. Train a classifier on the labeled (L) data (teacher)
- 2. Infer labels on a much larger unlabeled dataset \rightarrow P



- 1. Train a classifier on the labeled (L) data (teacher)
- 2. Infer labels on a much larger unlabeled dataset \rightarrow P
- 3. Train a larger classifier on L + P, adding noise (noisy student)

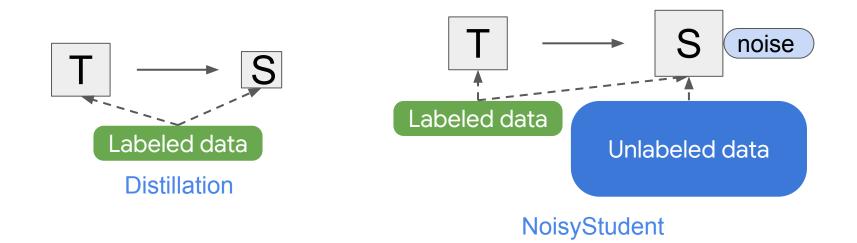


- 1. Train a classifier on the labeled (L) data (teacher)
- 2. Infer labels on a much larger unlabeled dataset \rightarrow P
- 3. Train a larger classifier on L + P, adding noise (noisy student)
 - a. Data Augmentation
 - b. Dropout
 - c. Stochastic Depth

- 1. Train a classifier on the labeled (L) data (teacher)
- 2. Infer labels on a much larger unlabeled dataset \rightarrow P
- 3. Train a larger classifier on L + P, adding noise (noisy student)
 - a. Data Augmentation
 - b. Dropout
 - c. Stochastic Depth
- 4. Go to step 2, with student as teacher

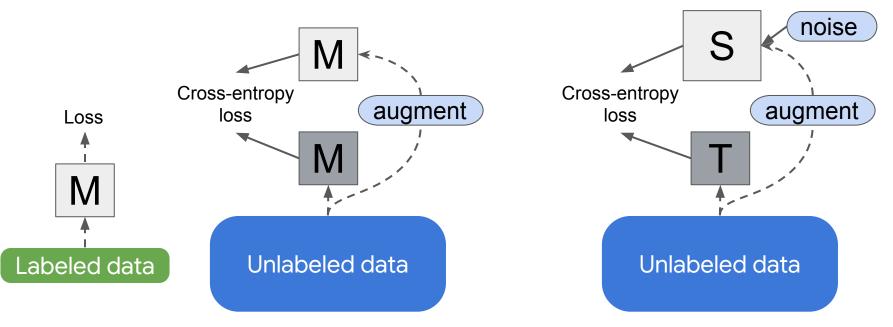
NoisyStudent vs. Distillation

Distillation focuses on speed rather than quality
 o no student noise, no unlabeled data, smaller student



Google Research

Consistency Training vs. Self-Training

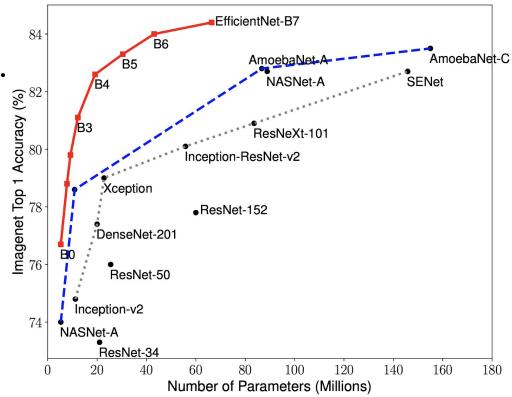


Consistency training (UDA, FixMatch) Single model M jointly trained from scratch Works great with small labeled data **Self-Training (NoisyStudent)** *Requires a converged teacher T* Works great with large labeled data

Experiments

Settings

• Architecture: EfficientNets.



Settings

- Architecture: EfficientNets (<u>Tan & Le, 2019</u>).
- Labeled dataset: ImageNet (1.3M images).
- Unlabeled dataset: JFT (300M unlabeled images).
 - Pseudo-labels: soft pseudo-labels (continuous).
- Iterative training: B7->L2->L2

ImageNet Results

Method	# Param	Extra Data	Тор-1 Асс.	Тор-5 Асс.
GPipe	557M	-	84.3%	97.0%
EfficientNet-B7	66M	_	85.0%	97.2%
EfficientNet-L2	480M	_	85.5%	97.5%
ResNeXt-101 WSL	829M	3.5B instagram images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL	829M	3.5B instagram images labeled with tags	86.4%	98.0%
Noisy Student (EfficientNet-L2)	480M	300M unlabeled images	88.4%	98.7%

• SOTA: 2% improvement of top-1 accuracy.

ImageNet Results

Method	# Param	Extra Data	Тор-1 Асс.	Тор-5 Асс.
GPipe	557M	-	84.3%	97.0%
EfficientNet-B7	66M	_	85.0%	97.2%
EfficientNet-L2	480M	-	85.5%	97.5%
ResNeXt-101 WSL	829M	3.5B instagram images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL	eXt-101WSL 829M 3.5B instagram images labeled with tag		86.4%	98.0%
Noisy Student (EfficientNet-L2)	480M	300M unlabeled images	88.4%	98.7%

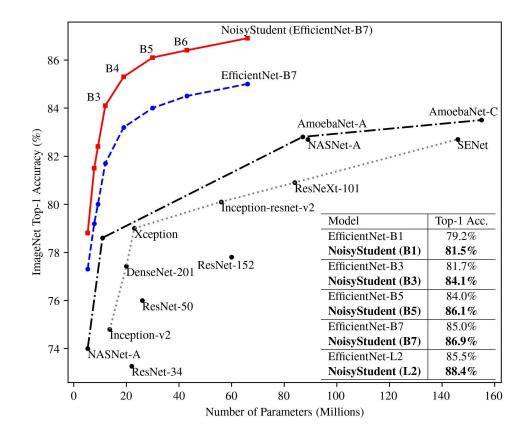
- SOTA: 2% improvement of top-1 accuracy.
- One order of magnitude less unlabeled data.

ImageNet Results

Method	# Param	Extra Data	Тор-1 Асс.	Тор-5 Асс.
GPipe	557M	_	84.3%	97.0%
EfficientNet-B7	66M	_	85.0%	97.2%
EfficientNet-L2	480M	_	85.5%	97.5%
ResNeXt-101 WSL	829M	3.5B instagram images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL	829M	3.5B instagram images labeled with tags	86.4%	98.0%
Noisy Student (EfficientNet-L2)	480M	300M unlabeled images	88.4%	98.7%

- SOTA: 2% improvement of top-1 accuracy.
- One order of magnitude less unlabeled data.
- Twice as small in the number of parameters.

Improvements across model sizes



Surprising Gains on Robustness Benchmarks

ImageNet-A

Sea Lion (NoisyStudent) Lighthouse (Baseline)

47

ImageNet-A: difficult images SOTA models failed.

Surprising Gains on Robustness Benchmarks

ImageNet-A
top-1 acc.ImageNet-C
mCEImageNet-P
mFRPrev. SOTA61.0%45.727.8Ours83.7%28.312.2

ImageNet-A: difficult images SOTA models failed.

ImageNet-C & P: corrupted and perturbed images (blurring, fogging, rotation and scaling).

ImageNet-A

Sea Lion (NoisyStudent) Lighthouse (Baseline)

ImageNet-C

Parking Meter (NoisyStudent) Vacuum (Baseline) Swing (NoisyStudent) Mosquito Net (Baseline)

ImageNet-P

plate rack refrigerator racing car

g car car wheel

plate rack medicine chest

plate rack medicine chest racing car

car wheel

Google Research

50

The Importance of Noise in Self-training

Model / Unlabeled Set Size	1.3M	130M
EfficientNet-B5	83.3%	84.0%
Noisy Student (B5)	83.9%	84.9%
student w/o Aug	83.6%	84.6%
student w/o Aug, SD, Dropout	83.2%	84.3%
teacher w. Aug, SD, Dropout	83.7%	84.4%

- Standard data augmentation is used when we use 1.3M unlabeled images.
- RandAugment is used when we use 130M unlabeled images.

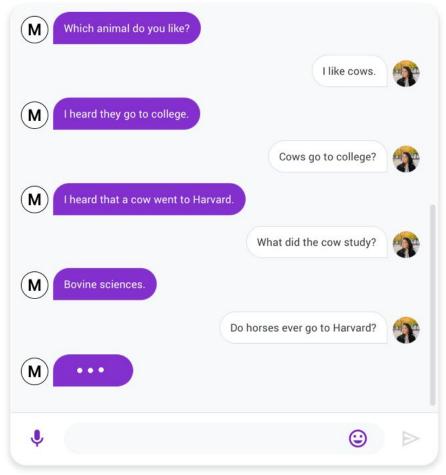
Summary

- Semi-supervised learning works at all scale!
- Possible to use unlabeled images to advance ImageNet SOTA
- Robustness gains for free.

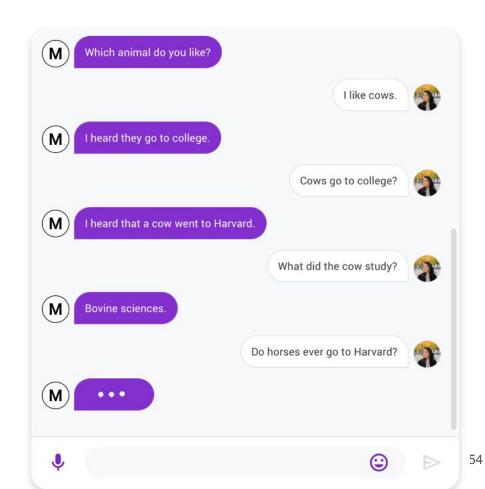
Paper: <u>https://arxiv.org/abs/1911.04252</u> Code: <u>https://github.com/google-research/noisystudent</u>

Let's switch gear!

How many jokes do you see?



Horses go to Hayvard! And one more joke after that ...

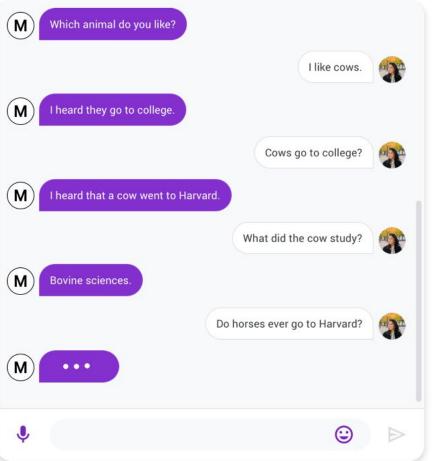


Horses go to Hayvard!

noun

noun: steer; plural noun: steers

a male domestic bovine animal that has been (



Meena – "Towards a Human-like Open-Domain Chatbot"

Daniel De Freitas Adiwardana

Thang Luong

Quoc Le

David R. So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu

Paper: <u>https://arxiv.org/abs/2001.09977</u> Blog: <u>https://twitter.com/GoogleAl/status/1222230622355087360</u> Conversation samples:

https://github.com/google-research/google-research/tree/master/meena

By the way, we never said this ...

MIT Technology Review

Artificial Intelligence Jan 30

Google says its new chatbot Meena is the best in the world

User: How are things?

Meena: They're good. How about you?

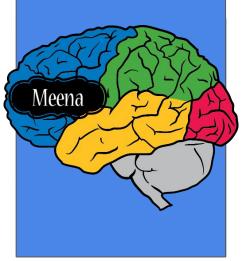
User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?



7 turns of context

Google Research

User: How are things?

Meena: They're good. How about you?

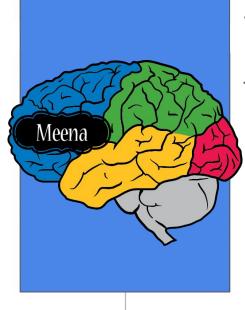
User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?



7 turns of context

Google Research

Trained to predict the next word.

Meena: The

User: How are things?

Meena: They're good. How about you?

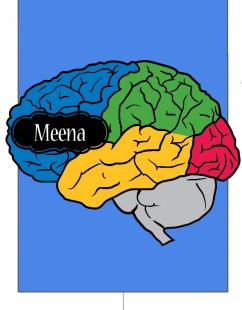
User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?



7 turns of context

Google Research

Trained to predict the next word.

Meena: The Next

User: How are things?

Meena: They're good. How about you?

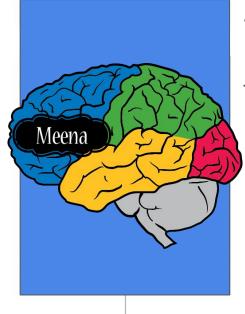
User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?

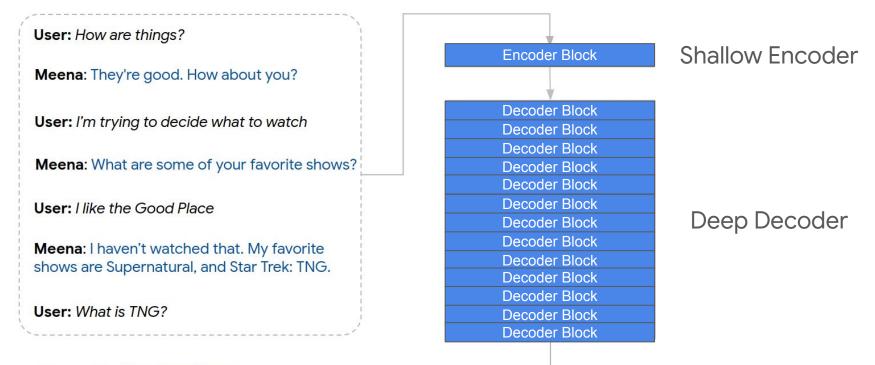


7 turns of context

Google Research

Trained to predict the next word.

Meena: The Next Generation



Meena: The Next Generation

Sequence-to-sequence with attention

Google Research

User: How are things?

Meena: They're good. How about you?

User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?

Evolved Transformer Decoder Block Evolved Transformer Decoder Block

Evolved Transformer Encoder Block

<u>Evolved</u> <u>Transformer</u> at the core

Google Research

found by Neural Architecture Search

Meena: The Next Generation

Better perplexity

The largest conversational model

Meena Scale2.6 Bn ParametersGPT2 Scale1.5 Bn Parameters

1.7x model capacity

The largest conversational model

Meena Scale	2.6 Bn Parameters	341 GB conversation text
GPT2 Scale	1.5 Bn Parameters	40 GB Internet text

1.7x model capacity 8.5x more data

The Meena Dataset

A curated version of public social media conversations

• 867M (context, response) pairs or 61B tokens

Filtered content:

• offensive, repetitive, too-long/short, non-textual.

Evaluation Methodology

Sensibleness & Specificity Average (SSA)

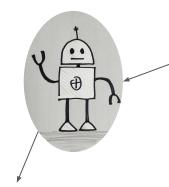
• Our proposed human evaluation metric

<u>Context</u>

Human: Do you know how to swim? Chatbot: yes Human: What's your favorite stroke?

Sensibleness & Specificity Average (SSA)

• Our proposed human evaluation metric



<u>Context</u>

Human: Do you know how to swim? Chatbot: yes Human: What's your favorite stroke?

Response Butterfly stroke Sensible: 1 Specific: 1

Sensibleness & Specificity Average (SSA)

• Our proposed human evaluation metric

<u>Context</u>

Human: Do you know how to swim? Chatbot: yes Human: What's your favorite stroke?

Response Butterfly stroke Sensible: 1 Specific: 1

Response I don't know Sensible: 1 Specific: 0

Sensibleness & Specificity Average (SSA)

• Our proposed human evaluation metric

<u>Context</u>

Human: Do you know how to swim? Chatbot: yes Human: What's your favorite stroke?

Response Butterfly stroke Sensible: 1 Specific: 1

Response I don't know Sensible: 1 Specific: 0 Response The one that shines Sensible: 0 Specific: 0 (default)

Sensibleness & Specificity Average (SSA)

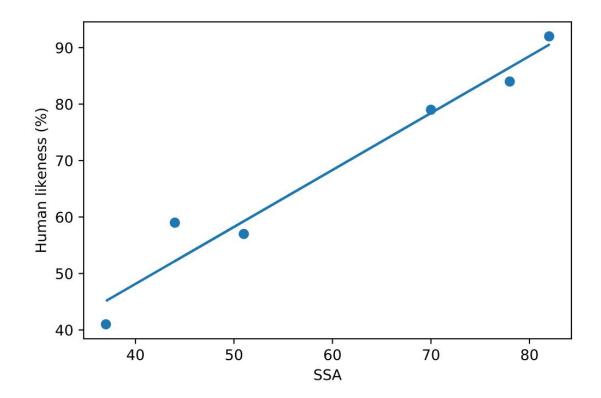
- Our proposed human evaluation metric
- Each response rated by 5 crowdworkers
 - majority voting to see if a response is sensible / specific

Sensibleness & Specificity Average (SSA)

- Our proposed human evaluation metric
- Each response rated by 5 crowdworkers
 - majority voting to see if a response is sensible / specific

Sensibleness: % of responses that are sensible. Specificity: % of responses that are specific. SSA = (Sensibleness + Specificity) / 2

Sanity check: SSA correlates with human likeness



Results

Existing chatbots and models

Mitsuku

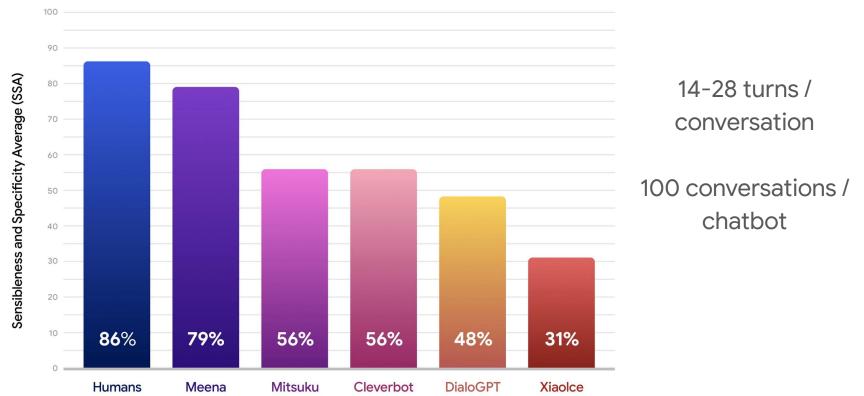
5-time winner of Turing Test style Loebner Prize

~Oldest bot, 150M conversations

From Microsoft (660M users)

Many chatbots, e.g., Microsoft DialoGPT

Evaluation of Free-form Chat



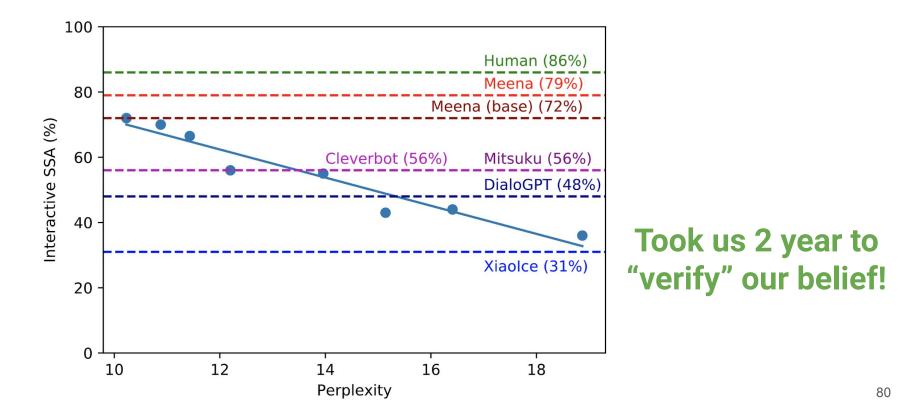
Sample Responses

Input	Meena	Cleverbot	DialoGPT
A : What is your favorite island in the world?	B: That's a tough one. I'd have to say Hawaii.	B: Daniel I like frites.	B: Probably the one on the north island

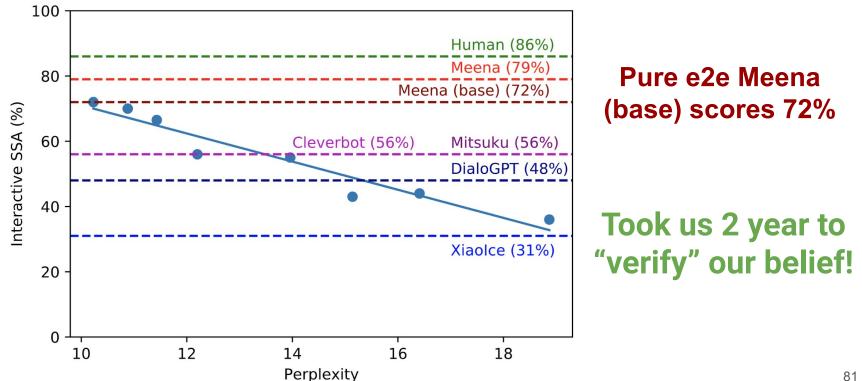
Sample Responses

Input	Meena	Cleverbot	DialoGPT
 A: What is your favorite island in the world? B: I would say Fiji 	A: Fiji, yes! I've been there once. It's the most beautiful place I've ever been. It definitely makes me want to move there. I hope you get to visit again soon!	A: I would have guessed 666.	A: Fiji is awesome! But I would say Fiji and Oceania are more popular at the moment.

Perplexity strongly correlates with SSA!



Perplexity strongly correlates with SSA!



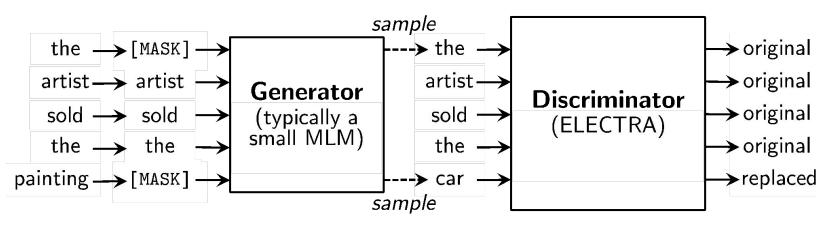
Summary

- We're getting closer to a human-like chatbot!
- Perplexity might be "almost" all we need.
- Other aspects: factuality, personality, empathy, & fairness.

Paper: <u>https://arxiv.org/abs/2001.09977</u> Blog: <u>https://twitter.com/GoogleAl/status/1222230622355087360</u> Conversation samples: <u>https://github.com/google-research/google-research/tree/master/meena</u>

ELECTRA: Pre-training Text Encoders as Discriminators rather than Generators Kevin Clark, Thang Luong, Quoc Le, Chris Manning

ICLR'2020, https://openreview.net/forum?id=r1xMH1BtvB



- Trained in a few days on a single GPU, better accuracy than GPT (30x compute).
- Trained at scale, SOTA results on the SQuAD question answering benchmark.